NADPH Oxidases pp 587-622 | Cite as

Ex Vivo Models of Chronic Granulomatous Disease

  • Julie Brault
  • Bénédicte Vigne
  • Marie José StasiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)


Induced pluripotent stem cells (iPSCs) are pluripotent stem cells that can be established from dedifferentiation of all somatic cell types by epigenetic phenomena. iPSCs can be differentiated into any mature cells like neurons, hepatocytes, or pancreatic cells that have not been easily available to date. Thus, iPSCs are widely used for disease modeling, drug discovery, and cell therapy development. Here, we describe a protocol to obtain human mature and functional neutrophils and macrophages as ex vivo models of X-linked chronic granulomatous disease (X-CGD). This method can be applied to model the other genetic forms of CGD. We also describe methods for testing the characteristics and functions of neutrophils and macrophages by morphology, phagocytosis assay, release of granule markers or cytokines, cell surface markers, and NADPH oxidase activity.

Key words

iPSCs CGD Hematopoietic differentiation Neutrophils Macrophages NADPH oxidase Phagocytosis Exocytosis Cytokines 



MJS is grateful for the support from the University Grenoble Alpes (AGIR program 2014), the Faculty of Medicine and the Pole Recherche, University Hospital Grenoble Alpes, and Interreg France-Suisse (Programme de Cooperation Territoriale Europeenne, Fond Europeen de Developpement Regional (FEDER), 2017–2019). This work was also supported by the Delegation for Clinical Research and Innovations (DRCI, Rementips project 2014). We also thank Sylvain Beaumel and Michèle Mollin for their helpful and valuable work at the Centre Diagnostic et Recherche sur la CGD (CDiReC), Grenoble France. This article is dedicated to the memory of Cécile Martel, an outstanding technician at the CDiReC, who passed away recently. We miss you.


  1. 1.
    Winkelstein JA, Marino MC, Johnston RB Jr et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 79:155–169CrossRefGoogle Scholar
  2. 2.
    Van den Berg JM, van Koppen E, Ahlin A et al (2009) Chronic granulomatous disease: the European experience. PLoS One 4:e5234CrossRefGoogle Scholar
  3. 3.
    Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45:246–265CrossRefGoogle Scholar
  4. 4.
    Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis 44:291–299CrossRefGoogle Scholar
  5. 5.
    Van de Geer A, Nieto-Patlán A, Kuhns DB, et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128:3957-3975 Google Scholar
  6. 6.
    Gungor T, Teira P, Slatter M et al (2014) Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet 383:436–448CrossRefGoogle Scholar
  7. 7.
    Kang EM, Malech HL (2012) Gene therapy for chronic granulomatous disease. Methods Enzymol 507:125–154CrossRefGoogle Scholar
  8. 8.
    Zhen L, King AA, Xiao Y et al (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci U S A 90:9832–9983CrossRefGoogle Scholar
  9. 9.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  10. 10.
    Scudellari M (2016) A decade of iPSCs. Nature 534:310–312CrossRefGoogle Scholar
  11. 11.
    Mukherjee S, Santilli G, Blundell MP et al (2011) Generation of functional neutrophils from a mouse model of X-linked chronic granulomatous disorder using induced pluripotent stem cells. PLoS One 6:e17565CrossRefGoogle Scholar
  12. 12.
    Jiang Y, Cowley SA, Siler U et al (2012) Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease. Stem Cells 30:599–611CrossRefGoogle Scholar
  13. 13.
    Brault J, Goutagny E, Telugu N et al (2014) Optimized generation of functional neutrophils and macrophages from patient-specific induced pluripotent stem cells: ex vivo models of X(0)-linked, AR22(0)- and AR47(0)-chronic granulomatous diseases. Biores Open Access 3:311–326CrossRefGoogle Scholar
  14. 14.
    Zou J, Sweeney CL, Chou BK et al (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPSCs: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572CrossRefGoogle Scholar
  15. 15.
    Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood non-mobilized CD34+ cells. Blood 121:98–107CrossRefGoogle Scholar
  16. 16.
    Flynn R, Grundmann A, Renz P et al (2015) CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPSCs. Exp Hematol 43:838–848CrossRefGoogle Scholar
  17. 17.
    Dreyer AK, Hoffmann D, Lachmann N et al (2015) TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 69:191–200CrossRefGoogle Scholar
  18. 18.
    Merling RK, Sweeney CL, Chu J et al (2015) An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 23:147–157CrossRefGoogle Scholar
  19. 19.
    Laugsch M, Rostovskaya M, Velychko S et al (2016) Functional restoration of gp91phox-oxidase activity by BAC transgenesis and gene targeting in X-linked chronic granulomatous disease iPSCs. Mol Ther 24:812–822CrossRefGoogle Scholar
  20. 20.
    Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ (2017) Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 12:2161–2177CrossRefGoogle Scholar
  21. 21.
    Zhou YY, Zeng F (2013) Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics 11:284–287CrossRefGoogle Scholar
  22. 22.
    Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412CrossRefGoogle Scholar
  23. 23.
    Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6:e17557CrossRefGoogle Scholar
  24. 24.
    Villa-Diaz LG, Ross AM, Lahann J et al (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1–7CrossRefGoogle Scholar
  25. 25.
    Fan Y, Wu J, Ashok P et al (2015) Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev 11:96–109CrossRefGoogle Scholar
  26. 26.
    Salvagiotto G, Burton S, Daigh CA et al (2011) A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS One 6:e17829CrossRefGoogle Scholar
  27. 27.
    Senju S, Haruta M, Matsumura K et al (2011) Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther 18:874–883CrossRefGoogle Scholar
  28. 28.
    Yanagimachi MD, Niwa A, Tanaka T et al (2013) Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One 8:e59243CrossRefGoogle Scholar
  29. 29.
    Choi KD, Vodyanik MA, Slukvin II (2009) Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest 119:2818–2829CrossRefGoogle Scholar
  30. 30.
    Morishima T, Watanabe K, Niwa A et al (2011) Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol 226:1283–1291CrossRefGoogle Scholar
  31. 31.
    Trocmé C, Gaudin P, Berthier S et al (1998) Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9. J Biol Chem 273:20677–20684CrossRefGoogle Scholar
  32. 32.
    Vodyanik MA, Bork JA, Thomson JA (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626CrossRefGoogle Scholar
  33. 33.
    Vodyanik MA, Slukvin II (2007) Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol Chapter 23:Unit 23:6Google Scholar
  34. 34.
    Choi K-D, Vodyanik M, Slukvin II (2011) Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 6:296–313CrossRefGoogle Scholar
  35. 35.
    Yokoyama Y, Suzuki T, Sakata-Yanagimoto M et al (2009) Derivation of functional mature neutrophils from human embryonic stem cells. Blood 113:6584–6592CrossRefGoogle Scholar
  36. 36.
    Niwa A, Heike T, Umeda K et al (2011) A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6:e22261CrossRefGoogle Scholar
  37. 37.
    Sweeney CL, Merling RK, Choi U et al (2014) Generation of functionally mature neutrophils from induced pluripotent stem cells. Methods Mol Biol 1124:189–206CrossRefGoogle Scholar
  38. 38.
    Kuhns DB, Long Priel DA, Chu J et al (2015) Isolation and functional analysis of human neutrophils. Curr Protoc Immunol 111:7.23.1–7.2316CrossRefGoogle Scholar
  39. 39.
    Stasia MJ, Li XJ (2008) Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 30:209–235CrossRefGoogle Scholar
  40. 40.
    Roos D, de Boer M (2014) Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol 175:139–149CrossRefGoogle Scholar
  41. 41.
    Beaumel S, Picciocchi A, Debeurme F et al (2017) Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radic Biol Med 113:1–15CrossRefGoogle Scholar
  42. 42.
    Nuutila J, Lilius E-M (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping population of binding and ingesting cells. Cytometry A 65A:93–102CrossRefGoogle Scholar
  43. 43.
    Greenlee-Wacker MC, Nauseef WM (2017) IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol 101:751–758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julie Brault
    • 1
  • Bénédicte Vigne
    • 1
  • Marie José Stasia
    • 1
    • 2
    Email author
  1. 1.Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble AlpesGrenobleFrance
  2. 2.Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance

Personalised recommendations