NADPH Oxidases pp 573-586 | Cite as

Gastrointestinal Complications in Chronic Granulomatous Disease

  • E. Liana FalconeEmail author
  • Steven M. Holland
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)


Almost half of patients with chronic granulomatous disease (CGD) suffer from gastrointestinal (GI) inflammation, the pathogenesis of which is complex and multifactorial. As a result, the management of CGD-associated GI inflammation remains challenging due to its chronicity and difficulty in managing the simultaneous need for immunomodulation with increased susceptibility to infection. In order to contextualize prospective treatment interventions for CGD-associated GI inflammation, we have reviewed the clinical presentation, pathogenesis and current management of this disease. Increased understanding of the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 2 (NOX2)-derived reactive oxygen species (ROS) in inflammatory bowel disease (IBD) will likely reveal novel targets for therapeutic intervention.

Key words

Chronic granulomatous disease Inflammatory bowel disease NADPH oxidase NOX2 Reactive oxygen species Microbiome 


  1. 1.
    Arnold DE, Heimall JR (2017) A review of chronic granulomatous disease. Adv Ther 34(12):2543–2557PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol 104(1):117–124PubMedCrossRefGoogle Scholar
  4. 4.
    Alimchandani M, Lai JP, Aung PP, Khangura S, Kamal N, Gallin JI et al (2013) Gastrointestinal histopathology in chronic granulomatous disease: a study of 87 patients. Am J Surg Pathol 37(9):1365–1372PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Khangura SK, Kamal N, Ho N, Quezado M, Zhao X, Marciano B et al (2016) Gastrointestinal features of chronic granulomatous disease found during endoscopy. Clin Gastroenterol Hepatol 14(3):395–402 e5PubMedCrossRefGoogle Scholar
  6. 6.
    Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O'Brien S et al (2004) Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114(2):462–468PubMedCrossRefGoogle Scholar
  7. 7.
    Magnani A, Brosselin P, Beaute J, de Vergnes N, Mouy R, Debre M et al (2014) Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol 134(3):655–62 e8PubMedCrossRefGoogle Scholar
  8. 8.
    Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183PubMedCrossRefGoogle Scholar
  9. 9.
    Labrosse R, Abou-Diab J, Blincoe A, Cros G, Luu TM, Deslandres C et al (2017) Very early-onset inflammatory manifestations of X-linked chronic granulomatous disease. Front Immunol 8:1167PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Damen GM, van Krieken JH, Hoppenreijs E, van Os E, Tolboom JJ, Warris A et al (2010) Overlap, common features, and essential differences in pediatric granulomatous inflammatory bowel disease. J Pediatr Gastroenterol Nutr 51(6):690–697PubMedCrossRefGoogle Scholar
  11. 11.
    Heltzer M, Jawad AF, Rae J, Curnutte JT, Sullivan KE, Diminished T (2002) cell numbers in patients with chronic granulomatous disease. Clin Immunol 105(3):273–278PubMedCrossRefGoogle Scholar
  12. 12.
    Albuquerque AS, Fernandes SM, Tendeiro R, Cheynier R, Lucas M, Silva SL et al (2017) Major CD4 T-cell depletion and immune senescence in a patient with chronic granulomatous disease. Front Immunol 8:543PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS et al (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111(9):3526–3531PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Montes-Berrueta D, Ramirez L, Salmen S, Berrueta L (2012) Fas and FasL expression in leukocytes from chronic granulomatous disease patients. Invest Clin 53(2):157–167PubMedGoogle Scholar
  15. 15.
    Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5(8):818–827PubMedCrossRefGoogle Scholar
  16. 16.
    Padgett LE (2016) Tse HM. NADPH oxidase-derived superoxide provides a third signal for CD4 T cell effector responses. J Immunol 197(5):1733–1742PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kwon BI, Kim TW, Shin K, Kim YH, Yuk CM, Yuk JM et al (2017) Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy 72(2):252–265PubMedCrossRefGoogle Scholar
  18. 18.
    Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z et al (2016) NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 126(5):1953–1967PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gabrion A, Hmitou I, Moshous D, Neven B, Lefevre-Utile A, Diana JS et al (2017) Mammalian target of rapamycin inhibition counterbalances the inflammatory status of immune cells in patients with chronic granulomatous disease. J Allergy Clin Immunol 139(5):1641–9 e6PubMedCrossRefGoogle Scholar
  20. 20.
    Horvath R, Rozkova D, Lastovicka J, Polouckova A, Sedlacek P, Sediva A et al (2011) Expansion of T helper type 17 lymphocytes in patients with chronic granulomatous disease. Clin Exp Immunol 166(1):26–33PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Liu S, Russo PA, Baldassano RN, Sullivan KE (2009) CD68 expression is markedly different in Crohn's disease and the colitis associated with chronic granulomatous disease. Inflamm Bowel Dis 15(8):1213–1217PubMedCrossRefGoogle Scholar
  22. 22.
    De Ravin SS, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M et al (2008) Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122(6):1097–1103PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bao S, Carr ED, Xu YH, Hunt NH (2011) Gp91(phox) contributes to the development of experimental inflammatory bowel disease. Immunol Cell Biol 89(8):853–860PubMedCrossRefGoogle Scholar
  24. 24.
    Pircalabioru G, Aviello G, Kubica M, Zhdanov A, Paclet MH, Brennan L et al (2016) Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19(5):651–663PubMedCrossRefGoogle Scholar
  25. 25.
    Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE et al (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40(1):66–77PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Conway KL, Goel G, Sokol H, Manocha M, Mizoguchi E, Terhorst C et al (2012) p40phox expression regulates neutrophil recruitment and function during the resolution phase of intestinal inflammation. J Immunol 189(7):3631–3640PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, Schuermann G et al (2001) Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med 194(9):1207–1218PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rodrigues-Sousa T, Ladeirinha AF, Santiago AR, Carvalheiro H, Raposo B, Alarcao A et al (2014) Deficient production of reactive oxygen species leads to severe chronic DSS-induced colitis in Ncf1/p47phox-mutant mice. PLoS One 9(5):e97532PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Falcone EL, Abusleme L, Swamydas M, Lionakis MS, Ding L, Hsu AP et al (2016) Colitis susceptibility in p47(phox−/−) mice is mediated by the microbiome. Microbiome 4:13PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fattouh R, Guo CH, Lam GY, Gareau MG, Ngan BY, Glogauer M et al (2013) Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection. PLoS One 8(4):e61629PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2(3):211–215PubMedCrossRefGoogle Scholar
  32. 32.
    Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G (1996) The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem 271(1):83–88PubMedCrossRefGoogle Scholar
  33. 33.
    Aviello G, Knaus UG (2017) ROS in gastrointestinal inflammation: rescue or Sabotage? Br J Pharmacol 174:1704–1718PubMedCrossRefGoogle Scholar
  34. 34.
    Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421PubMedCrossRefGoogle Scholar
  35. 35.
    Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J et al (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123(1):443–454PubMedCrossRefGoogle Scholar
  36. 36.
    Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32(23):3017–3028PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Treton X, Pedruzzi E, Guichard C, Ladeiro Y, Sedghi S, Vallee M et al (2014) Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice. PLoS One 9(7):e101669PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Coant N, Ben Mkaddem S, Pedruzzi E, Guichard C, Treton X, Ducroc R et al (2010) NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 30(11):2636–2650PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Swanson PA 2nd, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N et al (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci U S A 108(21):8803–8808PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sommer F, Backhed F (2015) The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 8(2):372–379PubMedCrossRefGoogle Scholar
  44. 44.
    Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N et al (2015) Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149(7):1849–1859PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    MacFie TS, Poulsom R, Parker A, Warnes G, Boitsova T, Nijhuis A et al (2014) DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflamm Bowel Dis 20(3):514–524PubMedCrossRefGoogle Scholar
  46. 46.
    Dhillon SS, Fattouh R, Elkadri A, Xu W, Murchie R, Walters T et al (2014) Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147(3):680–9 e2PubMedCrossRefGoogle Scholar
  47. 47.
    Hayes P, Dhillon S, O'Neill K, Thoeni C, Hui KY, Elkadri A et al (2015) Defects in NADPH oxidase genes and in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1(5):489–502PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB et al (2018) NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol 11:562–574PubMedCrossRefGoogle Scholar
  49. 49.
    Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S et al (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153(2):609–11 e3PubMedCrossRefGoogle Scholar
  50. 50.
    Magnani A, Mahlaoui N (2016) Managing inflammatory manifestations in patients with chronic granulomatous disease. Paediatr Drugs 18(5):335–345PubMedCrossRefGoogle Scholar
  51. 51.
    Maltzman JS, Koretzky GA (2003) Azathioprine: old drug, new actions. J Clin Invest 111(8):1122–1124PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Seger RA (2010) Chronic granulomatous disease: recent advances in pathophysiology and treatment. Neth J Med 68(11):334–340PubMedGoogle Scholar
  53. 53.
    Arlet JB, Aouba A, Suarez F, Blanche S, Valeyre D, Fischer A et al (2008) Efficiency of hydroxychloroquine in the treatment of granulomatous complications in chronic granulomatous disease. Eur J Gastroenterol Hepatol 20(2):142–144PubMedCrossRefGoogle Scholar
  54. 54.
    Rosh JR, Tang HB, Mayer L, Groisman G, Abraham SK, Prince A (1995) Treatment of intractable gastrointestinal manifestations of chronic granulomatous disease with cyclosporine. J Pediatr 126(1):143–145PubMedCrossRefGoogle Scholar
  55. 55.
    Noel N, Mahlaoui N, Blanche S, Suarez F, Coignard-Biehler H, Durieu I et al (2013) Efficacy and safety of thalidomide in patients with inflammatory manifestations of chronic granulomatous disease: a retrospective case series. J Allergy Clin Immunol 132(4):997–1000 e1–4PubMedCrossRefGoogle Scholar
  56. 56.
    Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ et al (2015) Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J Allergy Clin Immunol 135(2):517–27 e12PubMedCrossRefGoogle Scholar
  57. 57.
    Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, Marciano BE, Frasch SC, Henson PM et al (2015) Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol 136(5):1399–401 e1–3PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Migliavacca M, Assanelli A, Ferrua F, Cicalese MP, Biffi A, Frittoli M et al (2016) Pioglitazone as a novel therapeutic approach in chronic granulomatous disease. J Allergy Clin Immunol 137(6):1913–5 e2PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW et al (2010) Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107(7):3030–3033PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116(9):1570–1573PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM (2010) Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51(12):1429–1434PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hahn KJ, Ho N, Yockey L, Kreuzberg S, Daub J, Rump A et al (2015) Treatment with anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am J Gastroenterol 110(6):938–939PubMedCrossRefGoogle Scholar
  64. 64.
    Campbell N, Chapdelaine H (2017) Treatment of chronic granulomatous disease-associated fistulising colitis with vedolizumab. J Allergy Clin Immunol Pract 5(6):1748–1749PubMedCrossRefGoogle Scholar
  65. 65.
    Zerbe CS, Kreuzburg SA, Daub J, Marciano BE, Strongin A, Holland S et al (2017) Vedolizumab in chronic granulomatous disease: a safe and promising bridge therapy for CGD related colitis. J Clin Immunol 37(2):235Google Scholar
  66. 66.
    Hohenberger M, Cardwell LA, Oussedik E, Feldman SR (2018) Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. J Dermatolog Treat 29(1):13–18PubMedCrossRefGoogle Scholar
  67. 67.
    Wang R, Hasnain SZ, Tong H, Das I, Che-Hao Chen A, Oancea I et al (2015) Neutralizing IL-23 is superior to blocking IL-17 in suppressing intestinal inflammation in a spontaneous murine colitis model. Inflamm Bowel Dis 21(5):973–984PubMedCrossRefGoogle Scholar
  68. 68.
    Butte MJ, Park KT, Lewis DB (2016) Treatment of CGD-associated Colitis with the IL-23 blocker ustekinumab. J Clin Immunol 36(7):619–620PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Leiding JW, Logan BR, Yin Z, Arbuckle E, Bleesing JJ, Sullivan KE et al (2018) Resolution of CGD related colitis after allogeneic hematopoietic stem cell transplantation in patients with chronic granulomatous disease-early results from the 6903 study of the Primary Immune Deficiency Treatment Consortium (PIDTC). Biol Blood Marrow Transplant 24(3):S53–SS4CrossRefGoogle Scholar
  70. 70.
    Falcone EL (2016) Intestinal inflammation in chronic granulomatous disease: reactive oxygen species interact with the microbiome at the intestinal barrier (unpublished doctoral dissertation). University of Cambridge, Cambridge, United KingdomGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Clinical Immunology and Microbiology (LCIM)National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations