Advertisement

NADPH Oxidases pp 497-515 | Cite as

Proteomic Methods to Evaluate NOX-Mediated Redox Signaling

  • Christopher M. Dustin
  • Milena Hristova
  • Caspar Schiffers
  • Albert van der VlietEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)

Abstract

The NADPH oxidase (NOX) family of proteins is involved in regulating many diverse cellular processes, which is largely mediated by NOX-mediated reversible oxidation of target proteins in a process known as redox signaling. Protein cysteine residues are the most prominent targets in redox signaling, and to understand the mechanisms by which NOX affect cellular pathways, specific methodology is required to detect specific oxidative cysteine modifications and to identify targeted proteins. Among the many potential redox modifications involving cysteine residues, reversible modifications most relevant to NOX are sulfenylation (P-SOH) and S-glutathionylation (P-SSG), as both can induce structural or functional alterations. Various experimental approaches have been developed to detect these specific modifications, and this chapter will detail state-of-the-art methodology to selectively evaluate these modifications in specific target proteins in relation to NOX activation. We also discuss some of the limitations of these procedures and potential complementary approaches.

Key words

NADPH oxidases DUOX H2O2 Redox signaling Sulfenylation S-glutathionylation Dimedone 

Notes

Acknowledgments

The authors gratefully acknowledge research support from NHLBI and NIA (grants R01 HL085646, R01 HL138708 and R21 AG055325), as well as Fellowship support from NIH (T32 HL076122 and F31 HL142221).

References

  1. 1.
    Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313CrossRefGoogle Scholar
  2. 2.
    Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5(1):47–62PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421PubMedCrossRefGoogle Scholar
  4. 4.
    Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53PubMedCrossRefGoogle Scholar
  5. 5.
    Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stocker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28(7):558–573PubMedCrossRefGoogle Scholar
  7. 7.
    Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399PubMedCrossRefGoogle Scholar
  8. 8.
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121(5):667–670PubMedCrossRefGoogle Scholar
  9. 9.
    Salmeen A et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423(6941):769–773PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett WC et al (1999) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38(20):6699–6705PubMedCrossRefGoogle Scholar
  11. 11.
    Paulsen CE et al (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8(1):57–64PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Truong TH et al (2016) Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem Biol 23(7):837–848PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Krasnowska EK et al (2008) N-acetyl-l-cysteine fosters inactivation and transfer to endolysosomes of c-Src. Free Radic Biol Med 45(11):1566–1572PubMedCrossRefGoogle Scholar
  15. 15.
    Heppner DE et al (2016) The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem 291(44):23,282–23,293CrossRefGoogle Scholar
  16. 16.
    Sham D, Wesley UV, Hristova M, van der Vliet A (2013) ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 8(1):e54391PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hristova M et al (2016) Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 137(5):1545–1556. e1511PubMedCrossRefGoogle Scholar
  18. 18.
    Habibovic A et al (2016) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1(18):e88811PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gorissen SH et al (2013) Dual oxidase-1 is required for airway epithelial cell migration and bronchiolar reepithelialization after injury. Am J Respir Cell Mol Biol 48(3):337–345PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Reynaert NL et al (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β. Proc Natl Acad Sci 103(35):13,086–13,091CrossRefGoogle Scholar
  21. 21.
    Anathy V et al (2012) Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis. Mol Cell Biol 32(17):3464–3478PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19(13):1539–1605PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166PubMedCrossRefGoogle Scholar
  24. 24.
    Wall SB et al (2014) Detection of electrophile-sensitive proteins. Biochim Biophys Acta 1840(2):913–922PubMedCrossRefGoogle Scholar
  25. 25.
    Ida T et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111(21):7606–7611PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Akaike T et al (2017) Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun 8(1):1177PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Heppner DE et al (2018) Cysteine perthiosulfenic acid (Cys-SSOH): a novel intermediate in thiol-based redox signaling? Redox Biol 14:379–385PubMedCrossRefGoogle Scholar
  28. 28.
    Sethuraman M et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233PubMedCrossRefGoogle Scholar
  29. 29.
    Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1PubMedGoogle Scholar
  30. 30.
    Aesif SW, Janssen-Heininger YMW, Reynaert NL (2010) Protocols for the detection of S-glutathionylated and S-nitrosylated proteins in situ. Methods Enzymol 474:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Poole LB (2008) Measurement of protein sulfenic acid content. Curr Protoc Toxicol. 0 17:Unit17.12–Unit17.12. Editorial board, Mahin D. Maines (editor-in-chief) et al.Google Scholar
  32. 32.
    Maller C, Schroder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14(1):49–60PubMedCrossRefGoogle Scholar
  33. 33.
    Klomsiri C et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection: evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol 473:77–94PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yang J et al (2015) Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10(7):1022–1037PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898PubMedCrossRefGoogle Scholar
  36. 36.
    Markovic J et al (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282(28):20,416–20,424CrossRefGoogle Scholar
  37. 37.
    Townsend DM et al (2006) A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 69(2):501–508PubMedCrossRefGoogle Scholar
  38. 38.
    Brennan JP et al (2006) The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5(2):215–225PubMedCrossRefGoogle Scholar
  39. 39.
    Lind C et al (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406(2):229–240PubMedCrossRefGoogle Scholar
  40. 40.
    Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39(36):11,121–11,128CrossRefGoogle Scholar
  41. 41.
    Hristova M et al (2014) Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells. Redox Biol 2:436–446PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nelson KJ et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection: methods to visualize and identify labeled proteins. Methods Enzymol 473:95–115.  https://doi.org/10.1016/S0076-6879(10)73004-4PubMedCrossRefGoogle Scholar
  43. 43.
    Tsutsumi R et al (2017) Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun 8(1):466PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Charles RL et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6(9):1473–1484PubMedCrossRefGoogle Scholar
  46. 46.
    Yang J, Gupta V, Carroll KS, Liebler DC (2014) Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun 5:4776PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Checconi P et al (2015) Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress. PLoS One 10(5):e0127086PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Seo YH, Carroll KS (2011) Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew Chem Int Ed 50(6):1342–1345CrossRefGoogle Scholar
  49. 49.
    Forman HJ et al (2017) Protein cysteine oxidation in redox signaling: caveats on sulfenic acid detection and quantification. Arch Biochem Biophys 617:26–37PubMedCrossRefGoogle Scholar
  50. 50.
    Heppner DE, Janssen-Heininger YMW, van der Vliet A (2017) The role of sulfenic acids in cellular redox signaling: reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 616:40–46PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gupta V, Carroll KS (2016) Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid. Chem Sci 7(1):400–415.  https://doi.org/10.1039/c5sc02569aPubMedCrossRefGoogle Scholar
  52. 52.
    Gupta V, Yang J, Liebler DC, Carroll KS (2017) Diverse redoxome reactivity profiles of carbon nucleophiles. J Am Chem Soc 139(15):5588–5595PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christopher M. Dustin
    • 1
  • Milena Hristova
    • 1
  • Caspar Schiffers
    • 1
  • Albert van der Vliet
    • 1
    Email author
  1. 1.Department of Pathology and Laboratory MedicineCollege of Medicine, University of VermontBurlingtonUSA

Personalised recommendations