Advertisement

NADPH Oxidases pp 329-337 | Cite as

Hydro-Cy3-Mediated Detection of Reactive Oxygen Species In Vitro and In Vivo

  • Bejan J. Saeedi
  • Bindu Chandrasekharan
  • Andrew S. NeishEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)

Abstract

Reactive oxygen species (ROS) are potent signaling molecules with critical roles in cellular pathology and homeostasis. They are produced in all cell types via a diverse array of cellular machinery, giving rise to an equally diverse repertoire of molecular effects. These range from cytotoxic killing of microbes to alteration of the cellular transcriptional response to stress. Despite their importance, research into ROS has been difficult given their inherent instability and transient signaling properties. Herein we describe methods for the use of the redox-sensitive probe hydro-Cy3 for the detection and quantification of ROS both in vitro and in vivo.

Key words

Reactive oxygen species ROS Hydro-Cy3 Oxidative stress NADPH oxidase NOX 

Notes

Acknowledgments

The authors acknowledge support from the NIH AI64462 and CA179424.

References

  1. 1.
    Yang Y, Bazhin AV, Werner J et al (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32:249–270CrossRefGoogle Scholar
  2. 2.
    Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76CrossRefGoogle Scholar
  3. 3.
    Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14CrossRefGoogle Scholar
  4. 4.
    Singel KL, Segal BH (2016) NOX2-dependent regulation of inflammation. Clin Sci (Lond) 130:479–490CrossRefGoogle Scholar
  5. 5.
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189CrossRefGoogle Scholar
  6. 6.
    Kikuchi H, Hikage M, Miyashita H et al (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254:237–243CrossRefGoogle Scholar
  7. 7.
    Leoni G, Alam A, Neumann P-A et al (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123:443–454CrossRefGoogle Scholar
  8. 8.
    Jones RM, Luo L, Ardita CS et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028CrossRefGoogle Scholar
  9. 9.
    Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175CrossRefGoogle Scholar
  10. 10.
    Go Y-M, Jones DP (2017) Redox theory of aging: implications for health and disease. Clin Sci (Lond) 131:1669–1688CrossRefGoogle Scholar
  11. 11.
    Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748CrossRefGoogle Scholar
  12. 12.
    Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561CrossRefGoogle Scholar
  13. 13.
    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462CrossRefGoogle Scholar
  14. 14.
    Moi P, Chan K, Asunis I et al (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91:9926–9930CrossRefGoogle Scholar
  15. 15.
    McMahon M, Thomas N, Itoh K et al (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 281:24756–24768CrossRefGoogle Scholar
  16. 16.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913CrossRefGoogle Scholar
  17. 17.
    Jones RM, Desai C, Darby TM et al (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–1225CrossRefGoogle Scholar
  18. 18.
    Sadlowski CM, Maity S, Kundu K et al (2017) Hydrocyanines: a versatile family of probes for imaging radical oxidants in vitro and in vivo. Mol Sys Des Eng 2:191–200CrossRefGoogle Scholar
  19. 19.
    Kundu K, Knight SF, Willett N et al (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed Engl 48:299–303CrossRefGoogle Scholar
  20. 20.
    Ardita CS, Mercante JW, Kwon YM et al (2014) Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol 80:5068–5077CrossRefGoogle Scholar
  21. 21.
    Alam A, Leoni G, Quiros M et al (2016) The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 1:15021CrossRefGoogle Scholar
  22. 22.
    Pizarro G, Ríos E (2004) How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol 124:239–258CrossRefGoogle Scholar
  23. 23.
    Shapovalov SA, Kiseleva YS (2008) The association of cyanine dye cations with phenol red anions in aqueous solutions. Russ J Phys Chem 82:972–977CrossRefGoogle Scholar
  24. 24.
    Zhdanov AV, Aviello G, Knaus UG et al (2017) Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential. Biochim Biophys Acta 1861:198–204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bejan J. Saeedi
    • 1
  • Bindu Chandrasekharan
    • 1
  • Andrew S. Neish
    • 1
    Email author
  1. 1.Department of PathologyEmory University School of MedicineAtlantaUSA

Personalised recommendations