NADPH Oxidases pp 313-327 | Cite as

Imaging Intestinal ROS in Homeostatic Conditions Using L-012

  • Emer Conroy
  • Gabriella AvielloEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)


Reactive oxygen species (ROS) are critical redox regulators of cellular dynamics controlling homeostasis. Although numerous fluorescent probes are currently available to measure ROS in cell-based assays, the short-lived nature of these molecules renders their detection challenging in more complex biological systems, such as the gastrointestinal tract in vivo. However, in the past decade, significant progress has been made in the development of novel imaging technologies and probes, facilitating ROS quantification with high sensitivity, selectivity, and temporal resolution. The IVIS Spectrum (PerkinElmer) is an optical imaging system for small animal imaging allowing precise and noninvasive visualization of fluorescent or bioluminescent signals. Here, we describe a reproducible and comprehensive method for the measurement of physiological intestinal NADPH oxidase-derived ROS by using the chemiluminescent probe L-012. Using transgenic mice deficient in Nox isoforms expressed in the intestinal mucosa, we delineate the contribution of gut epithelial versus immune cell NADPH oxidase activity in homeostatic conditions. We also discuss L-012 probe specificity and potential alternatives for in vivo studies.

Key words

L-012 IVIS NADPH oxidase NOX1 NOX2 p22phox Intestine Microbiota Inflammatory bowel disease 



The authors thank Prof. Ulla G. Knaus for fruitful discussions and Dr. Jacek Zielonka for critical reading of the manuscript. EC is supported by the Irish Cancer Society Collaborative Cancer Research Centre BREAST-PREDICT. GA is supported by the European Crohn’s and Colitis Organisation (ECCO) and the Medical Research Council (MRC).


  1. 1.
    Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153. CrossRefPubMedGoogle Scholar
  2. 2.
    Aviello G, Knaus UG (2017) ROS in gastrointestinal inflammation: rescue Or Sabotage? Br J Pharmacol 174(12):1704–1718. CrossRefPubMedGoogle Scholar
  3. 3.
    O’Neill S, Brault J, Stasia MJ, Knaus UG (2015) Genetic disorders coupled to ROS deficiency. Redox Biol 6:135–156. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O’Brien S, Hilligoss DM, Malech HL, Gallin JI, Holland SM (2004) Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114(2):462–468CrossRefGoogle Scholar
  5. 5.
    Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol 104(1):117–124. CrossRefPubMedGoogle Scholar
  6. 6.
    Hayes P, Dhillon S, O’Neill K, Thoeni C, Hui KY, Elkadri A, Guo CH, Kovacic L, Aviello G, Alvarez LA, Griffiths AM, Snapper SB, Brant SR, Doroshow JH, Silverberg MS, Peter I, McGovern DP, Cho J, Brumell JH, Uhlig HH, Bourke B, Muise AA, Knaus UG (2015) Defects in NADPH oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1(5):489–502. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S, Begue B, Bras M, Pouliet A, Rakotobe S, Ruemmele F, Knaus UG, Cerf-Bensussan N (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153(2):609–611 e603. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB, Jung J, Mondal K, Parkes M, Mathew CG, Fiedler K, McCarthy DJ, WGS500 Consortium; Oxford IBD cohort study investigators; COLORS in IBD group investigators; UK IBD Genetics Consortium, Sullivan PB, Rodrigues A, Travis SPL, Moore C, Sambrook J, Ouwehand WH, Roberts DJ, Danesh J; INTERVAL Study, Russell RK, Wilson DC, Kelsen JR, Cornall R, Denson LA, Kugathasan S, Knaus UG, Serra EG, Anderson CA, Duerr RH, McGovern DP, Cho J, Powrie F, Li VS, Muise AM, Uhlig HH (2018) NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol 11(2):562–574. CrossRefPubMedGoogle Scholar
  9. 9.
    Woolley JF, Stanicka J, Cotter TG (2013) Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem Sci 38(11):556–565. CrossRefPubMedGoogle Scholar
  10. 10.
    Ren W, Ai HW (2013) Genetically encoded fluorescent redox probes. Sensors 13(11):15422–15433. CrossRefPubMedGoogle Scholar
  11. 11.
    Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS, Kempkes B, Bao G, Muller M (2016) Redox indicator mice stably expressing genetically encoded neuronal roGFP: versatile tools to decipher subcellular redox dynamics in neuropathophysiology. Antioxid Redox Signal 25(1):41–58. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tseng JC, Kung AL (2013) In vivo imaging method to distinguish acute and chronic inflammation. J Vis Exp (78).
  13. 13.
    Pizzolla A, Hultqvist M, Nilson B, Grimm MJ, Eneljung T, Jonsson IM, Verdrengh M, Kelkka T, Gjertsson I, Segal BH, Holmdahl R (2012) Reactive oxygen species produced by the NADPH oxidase 2 complex in monocytes protect mice from bacterial infections. J Immunol 188(10):5003–5011. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47(6):760–766. CrossRefPubMedGoogle Scholar
  15. 15.
    Han W, Li H, Segal BH, Blackwell TS (2012) Bioluminescence imaging of NADPH oxidase activity in different animal models. J Vis Exp (68):3925.
  16. 16.
    Zielonka J, Lambeth JD, Kalyanaraman B (2013) On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation. Free Radic Biol Med 65:1310–1314. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pospisil P, Prasad A, Rac M (2014) Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B 139:11–23. CrossRefPubMedGoogle Scholar
  18. 18.
    Van Wijk R, Kobayashi M, Van Wijk EP (2006) Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B 83(1):69–76. CrossRefPubMedGoogle Scholar
  19. 19.
    Birtic S, Ksas B, Genty B, Mueller MJ, Triantaphylides C, Havaux M (2011) Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J 67(6):1103–1115. CrossRefPubMedGoogle Scholar
  20. 20.
    Kobayashi M (2014) Highly sensitive imaging for ultra-weak photon emission from living organisms. J Photochem Photobiol B 139:34–38. CrossRefPubMedGoogle Scholar
  21. 21.
    Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1):9–23. CrossRefPubMedGoogle Scholar
  22. 22.
    Van Dyke K, Ghareeb E, Van Dyke M, Van Thiel DH (2007) Ultrasensitive peroxynitrite-based luminescence with L-012 as a screening system for antioxidative/antinitrating substances, e.g. Tylenol (acetaminophen), 4-OH tempol, quercetin and carboxy-PTIO. Luminescence 22(4):267–274. CrossRefPubMedGoogle Scholar
  23. 23.
    Matziouridou C, Rocha SDC, Haabeth OA, Rudi K, Carlsen H, Kielland A (2018) iNOS- and NOX1-dependent ROS production maintains bacterial homeostasis in the ileum of mice. Mucosal Immunol 11(3):774–784. CrossRefPubMedGoogle Scholar
  24. 24.
    Asghar MN, Emani R, Alam C, Helenius TO, Gronroos TJ, Sareila O, Din MU, Holmdahl R, Hanninen A, Toivola DM (2014) In vivo imaging of reactive oxygen and nitrogen species in murine colitis. Inflamm Bowel Dis 20(8):1435–1447. CrossRefPubMedGoogle Scholar
  25. 25.
    Bronsart LL, Stokes C, Contag CH (2016) Chemiluminescence imaging of superoxide anion detects beta-cell function and mass. PLoS One 11(1):e0146601. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bronsart L, Nguyen L, Habtezion A, Contag C (2016) Reactive oxygen species imaging in a mouse model of inflammatory bowel disease. Mol Imaging Biol 18(4):473–478. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N, Eaton KA, El-Zaatari M, Shreiner AB, Merchant JL, Owyang C, Kao JY (2015) Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149(7):1849–1859. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pircalabioru G, Aviello G, Kubica M, Zhdanov A, Paclet MH, Brennan L, Hertzberger R, Papkovsky D, Bourke B, Knaus UG (2016) Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19(5):651–663. CrossRefPubMedGoogle Scholar
  29. 29.
    Sedgwick AC, Sun X, Kim G, Yoon J, Bull SD, James TD (2016) Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chem Commun (Camb) 52(83):12350–12352. CrossRefGoogle Scholar
  30. 30.
    Oikawa D, Akai R, Tokuda M, Iwawaki T (2012) A transgenic mouse model for monitoring oxidative stress. Sci Rep 2:229. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Conway Institute, University College DublinDublinIreland
  2. 2.The Rowett Institute, University of AberdeenAberdeenUK

Personalised recommendations