Advertisement

NADPH Oxidases pp 283-299 | Cite as

Quantitative Imaging of Endogenous and Exogenous H2O2 Gradients in Live Zebrafish Larvae

  • Mark Jelcic
  • Balázs Enyedi
  • Philipp NiethammerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)

Abstract

Quantitative aspects of extracellular H2O2 signaling in animals, such as its spatiotemporal dynamics within tissues, remain little understood. Here we detail an optimized, experimental setup for measuring the dynamics and physiological consequences of extracellular H2O2 application to live tissues by intravital biosensor imaging in zebrafish larvae.

Key words

Hydrogen peroxide Diffusion Gradient Zebrafish Biosensor Intravital Quantitative 

Notes

Acknowledgments

Research was supported by the NIH/NIGMS grant R01GM099970, an American Asthma Foundation Scholar award to PN, the MSKCC Functional Genome Initiative, and in part through the NIH/NCI Cancer Center Support grant P30CA008748.

References

  1. 1.
    Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999CrossRefGoogle Scholar
  2. 2.
    Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23(5):424–429CrossRefGoogle Scholar
  3. 3.
    Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112CrossRefGoogle Scholar
  4. 4.
    Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A (2012) Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 199(2):225–234CrossRefGoogle Scholar
  5. 5.
    Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9(5):e1000621CrossRefGoogle Scholar
  6. 6.
    Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53(12):2269–2276CrossRefGoogle Scholar
  7. 7.
    Moreira S, Stramer B, Evans I, Wood W, Martin P (2010) Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr Biol 20(5):464–470CrossRefGoogle Scholar
  8. 8.
    Enyedi B, Niethammer P (2013) H2O2: a chemoattractant? Methods Enzymol 528:237–255CrossRefGoogle Scholar
  9. 9.
    Enyedi B, Niethammer P (2015) Mechanisms of epithelial wound detection. Trends Cell Biol 25(7):398–407CrossRefGoogle Scholar
  10. 10.
    Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22CrossRefGoogle Scholar
  11. 11.
    Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y et al (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222–228CrossRefGoogle Scholar
  12. 12.
    Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157CrossRefGoogle Scholar
  13. 13.
    Stöcker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of H2O2 signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28(7):558–573CrossRefGoogle Scholar
  14. 14.
    Redd MJ, Cooper L, Wood W, Stramer B, Martin P (2004) Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci 359(1445):777–784CrossRefGoogle Scholar
  15. 15.
    Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379CrossRefGoogle Scholar
  16. 16.
    Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW et al (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98(3):643–651CrossRefGoogle Scholar
  17. 17.
    Enyedi B, Kala S, Nikolich-Zugich T, Niethammer P (2013) Tissue damage detection by osmotic surveillance. Nat Cell Biol 15(9):1123–1130CrossRefGoogle Scholar
  18. 18.
    Jelcic M, Enyedi B, Xavier JB, Niethammer P (2017) Image-based measurement of H2O2 reaction-diffusion in wounded zebrafish larvae. Biophys J 112(9):2011–2018CrossRefGoogle Scholar
  19. 19.
    Gault WJ, Enyedi B, Niethammer P (2014) Osmotic surveillance mediates rapid wound closure through nucleotide release. J Cell Biol 207(6):767–782CrossRefGoogle Scholar
  20. 20.
    Enyedi B, Jelcic M, Niethammer P (2016) The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165(5):1160–1170CrossRefGoogle Scholar
  21. 21.
    Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3089CrossRefGoogle Scholar
  22. 22.
    Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286CrossRefGoogle Scholar
  23. 23.
    Pase L, Layton JE, Wittmann C, Ellett F, Nowell CJ, Reyes-Aldasoro CC, Varma S, Rogers KL, Hall CJ, Keightley MC, Crosier PS, Grabher C, Heath JK, Renshaw SA, Lieschke GJ (2012) Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 22(19):1818–1824CrossRefGoogle Scholar
  24. 24.
    Gauron C, Meda F, Dupont E, Albadri S, Quenech’Du N, Ipendey E, Volovitch M, Del Bene F, Joliot A, Rampon C, Vriz S (2016) Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev Biol 414(2):133–141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mark Jelcic
    • 1
    • 2
  • Balázs Enyedi
    • 3
    • 4
  • Philipp Niethammer
    • 1
    Email author
  1. 1.Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Louis V. Gerstner, Jr. Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Faculty of Medicine, Department of PhysiologySemmelweis UniversityBudapestHungary
  4. 4.MTA-SE Lendület Tissue Damage Research GroupHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary

Personalised recommendations