Advertisement

Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease

  • William M. Nauseef
  • Robert A. ClarkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)

Abstract

Neutrophils serve as the circulating cells that respond early and figure prominently in human host defense to infection and in inflammation in other settings. Optimal oxidant-dependent antimicrobial activity by neutrophils relies on the ability of stimulated phagocytes to utilize a multicomponent NADPH oxidase to generate oxidants. The frequent, severe, and often fatal infections experienced by individuals with chronic granulomatous disease (CGD), an inherited disorder in which one of the NADPH oxidase components is absent or dysfunctional, underscore the link between a functional phagocyte NADPH oxidase and robust host protection against microbial infection.

The history of the discovery and characterization of the normal neutrophil NADPH oxidase and the saga of recognizing CGD and its underlying causes together illustrate how the observations of astute clinicians and imaginative basic scientists synergize to forge new understanding of both basic cell biology and pathogenesis of human disease.

In this chapter, we review the events in the stepwise evolution of our understanding of the phagocyte NADPH oxidase, both in the context of normal human neutrophil function and in the setting of CGD. The phagocyte oxidase complex employs a heterodimeric transmembrane protein composed of gp91phox and p22phox to relay electrons from NADPH to molecular oxygen, while other cofactors contribute to localization and regulation of the activity of the assembled oxidase. The b-type cytochrome gp91phox, also known as NOX2, serves as the catalytic component of this multicomponent enzyme complex. Although many of the features of the composition and regulation of the phagocyte oxidase may apply as well to NOX2 expressed in non-phagocytes and to other members of the NOX protein family, exceptions exist and pose special challenges to investigators exploring the biology of NADPH oxidases.

Key words

Phagocyte NADPH oxidase NOX2 gp91phox p22phox Cytochrome b558 p47phox p67phox p40phox Chronic granulomatous disease (CGD) 

Notes

Acknowledgments

The authors have been supported by grants from the National Institutes of Health [R01- AI132335 (WMN); R01-AI16546 (WMN); UL1-TR002645 (RAC); P30-AG044271 (RAC); R01-AI020866 (RAC)] and the Veterans Health Administration [I01 BX000513 (WMN); I01-BX000117 (RAC); I01-BX003157 (RAC)].

References

  1. 1.
    Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057(3):281–298PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000) A mammalian H + channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Nauseef WM (2018) The Neutrophil NADPH Oxidase. In: Vissers M, Hampton MB, Kettle AJ (eds) Hydrogen Peroxide Metabolism in Health and Disease. CRC Press, Boca Raton, FL, pp 237–277Google Scholar
  5. 5.
    Baldridge CW, Gerard RW (1933) The extra respiration of phagocytosis. Am J Phys 103:235–236CrossRefGoogle Scholar
  6. 6.
    Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362PubMedPubMedCentralGoogle Scholar
  7. 7.
    Iyer GYN, Islam DMF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541CrossRefGoogle Scholar
  8. 8.
    Roberts J, Quastel JH (1964) Oxidation of reduced triphosphopyridine nucleotide by guinea pig polymorphonuclear leucocytes. Nature 202:85–86PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Evans WH, Karnovsky ML (1961) A possible mechanism for the stimulation of some metabolic functions during phagocytosis. J Biol Chem 236:Pc30–Pc32PubMedPubMedCentralGoogle Scholar
  10. 10.
    Karnovsky ML (1962) Metabolic basis of phagocytic activity. Physiol Rev 42:143–168PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Iyer GYN, Quastel JH (1963) NADPH and NADH oxidation by guinea pig polymorphonuclear leukocytes. Can J Biochem Physiol 41:427–434PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of phagocytizing cells. Experientia 20:21–23PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis. Br J Exp Pathol 45:548–559PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gabig TG, Babior B (1979) The O2 -forming oxidase responsible for the respiratory burst in human neutrophils. J Biol Chem 254(18):9070–9074PubMedPubMedCentralGoogle Scholar
  15. 15.
    Babior BM, Kipnes RS (1977) Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement. Blood 50:517–524PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gabig TG, Kipnes RS, Babior BM (1978) Solubilization of the O2 -forming activity responsible for the respiratory burst in human neutrophils. J Biol Chem 253(19):6663–6665PubMedPubMedCentralGoogle Scholar
  17. 17.
    Babior BM, Kipnes RS, Curnutte JT (1973) Biological defence mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Janeway CA, Craig J, Davidson M, Downey W, Gitlin D, Sullivan JC (1954) Hypergammaglobulinemia associated with severe recurrent and chronic non-specific infection. Am J Dis Child 88:388–392Google Scholar
  19. 19.
    Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood. Am J Dis Child 97:387–408CrossRefGoogle Scholar
  20. 20.
    Holmes B, Quie PG, Windhorst DB, Good RA (1966) Fatal granulomatous disease of childhood. Lancet 1:1225–1228PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Baehner RL, Nathan DG (1968) Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med 278:971–976PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hattori H (1961) Studies on the labile, stable Nadi oxidase and peroxidase staining reactions in the isolated particles of horse granulocyte. Nagoya J Med Sci 23:362–378PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shinagawa Y, Tanaka C, Teroaka A, Shinagawa Y (1966) A new cytochrome in neutrophilic granules of rabbit leucocyte. J Biochem 59:622–624PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Shinagawa Y, Tanaka C, Teroaka A (1966) Electron microscopic and biochemical study of the neutrophilic granules from leucocytes. J Electron Microsc 15:81–85Google Scholar
  27. 27.
    Segal AW, Jones OT, Webster D, Allison AC (1978) Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet 2:446–449PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gabig TG, Scbervish EW, Santinga JT (1982) Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils. J Biol Chem 257(8):4114–4119PubMedPubMedCentralGoogle Scholar
  30. 30.
    Cross A (1999) The participation of the hemes of flavocytochrome b245 in the electron transfer process in NADPH oxidase. Blood 93:4449–4449PubMedGoogle Scholar
  31. 31.
    Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720PubMedCrossRefGoogle Scholar
  32. 32.
    Pember SO, Heyl BL, Kinkade JM Jr, Lambeth JD (1984) Cytochrome b558 from (bovine) granulocytes. Partial purification from triton X-114 extracts and properties of the isolated cytochrome. J Biol Chem 259:10590–10595PubMedGoogle Scholar
  33. 33.
    Bellavite P, Papini E, Zeni L, Della Bianca V, Rossi F (1985) Studies on the nature and activation of O2(−)-forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme. Free Radic Res Commun 1(1):11–29PubMedCrossRefGoogle Scholar
  34. 34.
    Harper AM, Dunne MJ, Segal AW (1984) Purification of cytochrome b-245 from human neutrophils. Biochem J 219:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Harper AM, Chaplin MF, Segal AW (1985) Cytochrome b-245 from human neutrophils is a glycoprotein. Biochem J 227:783–788PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lutter R, van Schaik MLJ, van Zwieten R, Wever R, Roos D, Hamers MN (1985) Purification and partial characterization of the b-type cytochrome from human polymorphonuclear leukocytes. J Biol Chem 260:2237–2244PubMedPubMedCentralGoogle Scholar
  37. 37.
    Segal AW (1987) Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1988) The quaternary structure of the plasma membrane b-type cytochrome of human granulocytes. Biochim Biophys Acta 932(1):71–83PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH (1988) Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A 85:3319–3323PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Segal AW, Cross AR, Garcia RC, Borregaard N, Valerius NH, Soothill JF, Jones OTG (1983) Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med 308:245–251PubMedCrossRefGoogle Scholar
  41. 41.
    Bohler MC, Seger RA, Mouy R, Vilmer E, Fischer A, Criscelli C (1986) A study of 24 patients with chronic granulomatous disease: a new classification by correlating respiratory burst, cytochrome b, and flavoprotein. J Clin Immunol 6:136–145PubMedCrossRefGoogle Scholar
  42. 42.
    Ohno Y, Buescher ES, Roberts R, Metcalf JA, Gallin JI (1986) Reevaluation of cytochrome b and flavin adenine dinucleotide in neutrophils from patients with chronic granulomatous disease and description of a family with probable autosomal recessive inheritance of cytochrome b deficiency. Blood 67(4):1132–1138PubMedGoogle Scholar
  43. 43.
    Curnutte JT, Berkow RL, Roberts RL, Shurin SB, Scott PJ (1988) Chronic granulomatous disease due to a defect in the cytosolic factor required for nicotinamide adenine dinucleotide phosphate oxidase activation. J Clin Invest 81:606–610PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15:578–584PubMedCrossRefGoogle Scholar
  46. 46.
    DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b 558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275(18):13986–13993PubMedCrossRefGoogle Scholar
  47. 47.
    Segal AW, Jones OTG (1980) Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett 110:111–114PubMedCrossRefGoogle Scholar
  48. 48.
    Hamers MN, deBoer M, Meerhof LJ, Weening RS, Roos D (1984) Complementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease. Nature 307:553–555PubMedCrossRefGoogle Scholar
  49. 49.
    DeChatelet LR, McCall CE, Shirley PS (1980) Activation of dialysis of NAD(P)H oxidase(s) from human neutrophils. J Reticuloendothel Soc 28(6):533–545PubMedGoogle Scholar
  50. 50.
    Heynemann RA, Vercauteren RE (1984) Activation of a NADPH-dependent oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukoc Biol 36:751–759CrossRefGoogle Scholar
  51. 51.
    Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221PubMedCrossRefGoogle Scholar
  52. 52.
    Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75:1740–1743PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    McPhail LC, Shirley PS, Clayton CC, Snyderman R (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: evidence for a soluble cofactor. J Clin Invest 75:1735–1739PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils: subcellular localization and characterization of an arachidonate-activatable superoxide- generating system. J Biol Chem 262:4065–4074PubMedGoogle Scholar
  55. 55.
    Seifert R, Rosenthal W, Schultz G (1986) Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett 205(1):161–165PubMedCrossRefGoogle Scholar
  56. 56.
    Gabig TG, English D, Akard LP, Schell MJ (1987) Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. J Biol Chem 262:1685–1690PubMedGoogle Scholar
  57. 57.
    Ligeti E, Doussiere J, Vignais PV (1988) Activation of the O2(˙−)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry 27(1):193–200PubMedCrossRefGoogle Scholar
  58. 58.
    Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil NADPH oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1298PubMedCrossRefGoogle Scholar
  59. 59.
    Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301PubMedCrossRefGoogle Scholar
  60. 60.
    Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, Pearson DW, Nauseef WM, Curnutte JT (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652PubMedCrossRefGoogle Scholar
  61. 61.
    Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21 rac1. Nature 353:668–670PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pick E, Kroizman T, Abo A (1989) Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components-one of them is also present in certain nonphagocytic cells. J Immunol 143(12):4180–4187PubMedGoogle Scholar
  63. 63.
    Sha'ag D, Pick E (1990) Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. Biochim Biophys Acta 1037(3):405–412PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515PubMedCrossRefGoogle Scholar
  65. 65.
    Fuchs A, Dagher MC, Jouan A, Vignais PV (1994) Activation of the O2(−)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur J Biochem 226(2):587–595PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Abo A, Boyhan A, West I, Thrasher AJ, Segal AW (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67- phox, p47- phox, p21 rac 1, and cytochrome b −245. J Biol Chem 267:16767–16770PubMedPubMedCentralGoogle Scholar
  67. 67.
    Rotrosen D, Yeung CL, Katkin JP (1993) Production of recombinant cytochrome b558 allows reconstitution of the phagocyte NADPH oxidase solely from recombinant proteins. J Biol Chem 268:14256–14260PubMedPubMedCentralGoogle Scholar
  68. 68.
    Matute JD, Arias AA, Wright NAM, Wrobel I, Waterhouse CCM, Li XJ, archal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114(15):3309–3315PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wientjes FB, Hsuan JJ, Totty NF, Segal AW (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296:557–561PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Someya A, Nagaoka I, Yamashita T (1993) Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS Lett 330:215–218PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T (1994) A novel cytosolic component, p40 phox, of respiratory burst oxidase associates with p67 phox and is absent in patients with chronic granulomatous disease who lack p67 phox. Biochem Biophys Res Commun 199:1378–1387PubMedCrossRefGoogle Scholar
  72. 72.
    Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: Binding partners of SH3 domains. Protein Sci 5:2353–2357PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wishart M, Taylor G, Dixon J (2001) Phoxy lipids: revealing PX domains as phosphoinositide binding modules. Cell 105:817–820PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 8(4):829–839PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ago T, Takeya R, Hiroaki H, Kuribayashi F, Ito T, Kohda D, Sumimoto H (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287(3):733–738PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ellson C, Gobert-Gosse S, Anderson K, Davidson K, Erdjument-Bromage H, Tempst P, Thuring J, Cooper M, Lim ZY, Holmes A, Gaffney P, Chilvers E, Hawkins P, Stephens L (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40 phox. Nat Cell Biol 3:679–682PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho WW, Williams RL (2002) Binding of the PX domain of p47 phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21(19):5057–5068PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ (1989) Association of a ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Knoller S, Shpungin S, Pick E (1991) The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b 559. J Biol Chem 266:2795–2804PubMedPubMedCentralGoogle Scholar
  80. 80.
    Li Y, Yan J, De P, Chang HC, Yamauchi A, Christopherson KW 2nd, Paranavitana NC, Peng X, Kim C, Munugalavadla V, Kapur R, Chen H, Shou W, Stone JC, Kaplan MH, Dinauer MC, Durden DL, Quilliam LA (2007) Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. J Immunol 179(12):8322–8331PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Paclet MH, Berthier S, Kuhn L, Garin J, Morel F (2007) Regulation of phagocyte NADPH oxidase activity: identification of two cytochrome b 558 activation states. FASEB J 21:1244–1255PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Baillet A, Hograindleur MA, El Benna J, Grichine A, Berthier S, Morel F, Paclet MH (2016) Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. FASEB J 31(2):663–673.  https://doi.org/10.1096/fj.201600720R CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Dana R, Leto TL, Malech HL, Levy R (1998) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 273(1):441–445PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Li Q, Cathcart MK (1997) Selective inhibition of cytosolic phospholipase A 2 in activated human mononcytes. J Biol Chem 272(4):2404–2411PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bae Y, Kim Y, Kim J, Lee T, Kim Y, Suh P, Ryu S (2000) Independent functioning of cytosolic phospholipase A 2 and phospholipase D 1 in Trp-Lys-Tyr-Met-Val-D-Met induced superoxide generationin human monocytes. J Immunol 164:4089–4096PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rubin BB, Downey GP, Koh A, Degousee N, Ghomashchi F, Nallan L, Stefanski E, Harkin DW, Sun C, Smart BP, Lindsay TF, Cherepanov V, Vachon E, Kelvin D, Sadilek M, Brown GE, Yaffe MB, Plumb J, Grinstein S, Glogauer M, Gelb MH (2005) Cytosolic phospholipase A 2- α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infect. cPLA2- α does not regulate neutrophil nadph oxidase activity. J Biol Chem 280(9):7519–7529PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Berthier S, Nguyen MVC, Baillert A, Hograindleur MA, Paclet MH, Polack B, Morel F (2012) Molecular interface of S100A8 with cytochrome b 558 and NADPH oxidase activation. PLoS One 7(7):e40277PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Berthier S, Paclet MH, Lerouge S, Roux F, Vergnaud S, Coleman AW, Morel F (2003) Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation. J Biol Chem 278(28):25499–25508PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Doussiere J, Bouzidi F, Vignais PV (2002) The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils. Eur J Biochem 269:3246–3255PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J (2005) The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J 19(3):467–469PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Taylor RM, Riesselman MH, Lord CI, Gripentrog JM, Jesaitis AJ (2012) Anionic lipid-induced conformational changes in human phagocyte flavocytochrome b precede assembly and activation of the NADPH oxidase complex. Arch Biochem Biophys 52(1–2):24–31CrossRefGoogle Scholar
  92. 92.
    Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122(4):277–291PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil NADPH oxidase assembly. Membrane translocation of p47- phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Allen LAH, DeLeo FR, Gallois A, Toyoshima S, Suzuki K, Nauseef WM (1999) Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47 phox and p67 phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 93:3521–3530PubMedPubMedCentralGoogle Scholar
  95. 95.
    Dusi S, Nadalini KA, Donini M, Zentilin L, Wientjes FB, Roos D, Giacca M, Rossi F (1998) Nicotinamide-adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol 161:4968–4974PubMedPubMedCentralGoogle Scholar
  96. 96.
    Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J (2018) NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Investig 48(Suppl 2):e12951.  https://doi.org/10.1111/eci.12951 CrossRefGoogle Scholar
  97. 97.
    Brechard S, Plancon S, Tschirhart EJ (2013) New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 18(6):661–676.  https://doi.org/10.1089/ars.2012.4773 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Foubert TR, Burritt JB, Taylor RM, Jesaitis AJ (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS, and arachidonate: intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b 558. Biochim Biophys Acta 78380:1–11Google Scholar
  99. 99.
    Shao DM, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550(1–3):101–106PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Jin S, Zhou F, Katirai F, Li PL (2011) Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 15(4):1043–1083PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nisimoto Y, Motalebi S, Han CH, Lambeth JD (1999) The p67 phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b 558. J Biol Chem 274(33):22999–23005PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Bánfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Cheng G, Ritsick D, Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox and p67phox. J Biol Chem 279(33):34250–34255PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278(22):20006–20012PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Segal AW, Harper AM, Cross AR, Jones OT (1986) Cytochrome b-245. Methods Enzymol 132:378–394PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann Y, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Moreno JC, Bikker H, Kempers MJE, Van Trotsenburg ASP, Baas F, De Vijlder JJM, Vulsma T, Ris-Stalpers C (2002) Inactivating mutations in the gene for thyroid oxidase 2 (thox2) and congenital hypothyroidism. N Engl J Med 347(2):95–102PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Institute for Integration of Medicine and Science and Department of MedicineUniversity of Texas Health Science Center, and South Texas Veterans Healthcare SystemSan AntonioUSA

Personalised recommendations