Advertisement

In Ovo Electroporation of Plasmid DNA and Morpholinos into Specific Tissues During Early Embryogenesis

  • Rebecca McLennanEmail author
  • Paul M. Kulesa
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1976)

Abstract

In ovo electroporation enables transfection of non-viral plasmid DNA and/or morpholinos to fluorescently label and/or perturb gene function in cells of interest. However, targeted electroporation into specific subregions of the embryo can be challenging due to placement and size limitations of the electrodes. Here we describe the basic techniques for in ovo electroporation in the chick embryo and suggest parameters to electroporate cells within different target tissues that with some modifications may be applicable to a wide range of developmental stages and other embryo model organisms.

Key words

Chick Embryogenesis Electroporation Cell labeling Gene perturbation Morpholinos Targeted transfection 

References

  1. 1.
    Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230(2):376–380CrossRefGoogle Scholar
  2. 2.
    Momose T, Tonegawa A, Takeuchi J, Ogawa H, Umesono K, Yasuda K (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Develop Growth Differ 41(3):335–344CrossRefGoogle Scholar
  3. 3.
    Itasaki N, Bel-Vialar S, Krumlauf R (1999) 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1(8):E203–E207.  https://doi.org/10.1038/70231CrossRefPubMedGoogle Scholar
  4. 4.
    Swartz M, Eberhart J, Mastick GS, Krull CE (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233(1):13–21.  https://doi.org/10.1006/dbio.2001.0181CrossRefPubMedGoogle Scholar
  5. 5.
    Nakamura H, Katahira T, Sato T, Watanabe Y, Funahashi J (2004) Gain- and loss-of-function in chick embryos by electroporation. Mech Dev 121(9):1137–1143.  https://doi.org/10.1016/j.mod.2004.05.013CrossRefPubMedGoogle Scholar
  6. 6.
    Kulesa PM, Teddy JM, Smith M, Alexander R, Cooper CH, Lansford R, McLennan R (2010) Multispectral fingerprinting for improved in vivo cell dynamics analysis. BMC Dev Biol 10:101.  https://doi.org/10.1186/1471-213X-10-101CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Scaal M, Gros J, Lesbros C, Marcelle C (2004) In ovo electroporation of avian somites. Dev Dyn 229(3):643–650.  https://doi.org/10.1002/dvdy.10433CrossRefPubMedGoogle Scholar
  8. 8.
    Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305(2):616–624.  https://doi.org/10.1016/j.ydbio.2007.01.043CrossRefPubMedGoogle Scholar
  9. 9.
    Watanabe T, Saito D, Tanabe K, Suetsugu R, Nakaya Y, Nakagawa S, Takahashi Y (2007) Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev Biol 305(2):625–636.  https://doi.org/10.1016/j.ydbio.2007.01.042CrossRefPubMedGoogle Scholar
  10. 10.
    Chen YX, Krull CE (2008) Using in ovo electroporation to transfect cells in avian somites. CSH Protoc 2008.  https://doi.org/10.1101/pdb.prot4924Google Scholar
  11. 11.
    Linn SA, Krull CE (2008) Transfecting avian motor neurons and their axons using in ovo electroporation. CSH Protoc 2008.  https://doi.org/10.1101/pdb.prot4926CrossRefGoogle Scholar
  12. 12.
    Farley EK, Gale E, Chambers D, Li M (2011) Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 6:17.  https://doi.org/10.1186/1749-8104-6-17CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Simkin JE, Zhang D, Ighaniyan S, Newgreen DF (2014) Parameters affecting efficiency of in ovo electroporation of the avian neural tube and crest. Dev Dyn 243(11):1440–1447.  https://doi.org/10.1002/dvdy.24163CrossRefPubMedGoogle Scholar
  14. 14.
    Taneyhill LA, Coles EG, Bronner-Fraser M (2007) Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 134(8):1481–1490.  https://doi.org/10.1242/dev.02834CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wagner G, Peradziryi H, Wehner P, Borchers A (2010) PlexinA1 interacts with PTK7 and is required for neural crest migration. Biochem Biophys Res Commun 402(2):402–407.  https://doi.org/10.1016/j.bbrc.2010.10.044CrossRefPubMedGoogle Scholar
  16. 16.
    Zanin JP, Battiato NL, Rovasio RA (2013) Neurotrophic factor NT-3 displays a non-canonical cell guidance signaling function for cephalic neural crest cells. Eur J Cell Biol 92(8–9):264–279.  https://doi.org/10.1016/j.ejcb.2013.10.006CrossRefPubMedGoogle Scholar
  17. 17.
    Betancur P, Simoes-Costa M, Sauka-Spengler T, Bronner ME (2014) Expression and function of transcription factor cMyb during cranial neural crest development. Mech Dev 132:38–43.  https://doi.org/10.1016/j.mod.2014.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vermillion KL, Lidberg KA, Gammill LS (2014) Expression of actin-binding proteins and requirement for actin-depolymerizing factor in chick neural crest cells. Dev Dyn 243(5):730–738CrossRefGoogle Scholar
  19. 19.
    Khatri SB, Edlund RK, Groves AK (2014) Foxi3 is necessary for the induction of the chick otic placode in response to FGF signaling. Dev Biol 391(2):158–169.  https://doi.org/10.1016/j.ydbio.2014.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McLennan R, Schumacher LJ, Morrison JA, Teddy JM, Ridenour DA, Box AC, Semerad CL, Li H, McDowell W, Kay D, Maini PK, Baker RE, Kulesa PM (2015) VEGF signals induce trailblazer cell identity that drives neural crest migration. Dev Biol 407(1):12–25.  https://doi.org/10.1016/j.ydbio.2015.08.011CrossRefPubMedGoogle Scholar
  21. 21.
    Mende M, Christophorou NA, Streit A (2008) Specific and effective gene knock-down in early chick embryos using morpholinos but not pRFPRNAi vectors. Mech Dev 125(11–12):947–962.  https://doi.org/10.1016/j.mod.2008.08.005CrossRefPubMedGoogle Scholar
  22. 22.
    Voiculescu O, Papanayotou C, Stern CD (2008) Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc 3(3):419–426.  https://doi.org/10.1038/nprot.2008.10CrossRefPubMedGoogle Scholar
  23. 23.
    Wu CY, Taneyhill LA (2012) Annexin a6 modulates chick cranial neural crest cell emigration. PLoS One 7(9):e44903.  https://doi.org/10.1371/journal.pone.0044903CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stowers Institute for Medical ResearchKansas CityUSA
  2. 2.Department of Anatomy and Cell BiologyUniversity of Kansas School of MedicineKansas CityUSA

Personalised recommendations