Advertisement

Avenues for Investigating the Neural Crest and Its Derivatives in Non-model (Unconventional) Vertebrates: A Craniofacial Skeleton Perspective

  • Michael J. DepewEmail author
  • Federica Bertocchini
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1976)

Abstract

One of the early, profound insights regarding the biology of the neural crest was the observation of its contribution to the skeletal structures of the cranium and jaws. The critical nature of these structures made the comparative analysis of the cranial neural crest and its derived structures essential investigative aims toward our understanding of the development and evolution of vertebrates and vertebrate-specific structures. Though classically applied to a relatively wide range of taxa in the nineteenth and early twentieth centuries, the application of traditional methodologies for complex comparative developmental and anatomical analyses subsequently become more limited by their time-consuming nature, resource scarcity, and a greater emphasis on the genetic and molecular regulation of patterning and morphogenesis in a select number of tractable model organisms. Recently, however, this trend has been reversed, and the value of genetic and molecular-based questions applied to non-model (unconventional) vertebrate organisms has been re-appreciated. This is particularly true of comparative investigations of cranial neural crest biology. Herein, we present methodologies for the analysis of the cranial neural crest and its structural derivatives employable in modern investigations of both model and unconventional vertebrate organisms.

Key words

Craniofacial Skeleton Bone Cartilage Evolution Anatomy Scanning Electron Microscopy Unconventional Vertebrates 

References

  1. 1.
    McLeod MJ (1980) Differential staining of cartilage and bone in whole mouse fetuses by Alcian blue and Alizarin red S. Teratology 22:299–301CrossRefGoogle Scholar
  2. 2.
    Inouye M (1976) Differential staining of cartilage and bone in fetal mouse skeleton by Alcian blue and Alizarin red S. Congenit Anom 16:171–173Google Scholar
  3. 3.
    Schultze O (1897) Uber Herstellung and Conservirung durchsichtigen Embryonen zum Studium der Skeletbildung. Anat. Anz. 13 Verhandlungen der Anatomischen Gesellschaft, 3–5Google Scholar
  4. 4.
    Mall FP (1906) On ossification centers in human embryos less than one hundred days old. J Anat 5:433–458CrossRefGoogle Scholar
  5. 5.
    Spalteholz W (1914) Uber das Durchsichtigmachen von Mensichlichen und Tierischen Praparaten, 2 Auflage edn. Hirzel, LeipzigGoogle Scholar
  6. 6.
    Batson OV (1921) The differential staining of bone. 1. The staining of preserved specimen. Anat Rec 22:159–164CrossRefGoogle Scholar
  7. 7.
    Dawson AB (1926) A note on the staining of the skeleton of cleared specimens with Alizarin red S. Stain Technol 1:123–125CrossRefGoogle Scholar
  8. 8.
    Lipman HJ (1935) Staining the skeleton of cleared embryos with Alizarin red S. Stain Technol 10:61–63CrossRefGoogle Scholar
  9. 9.
    Richmond GW, Bennett L (1938) Clearing and staining of embryos for demonstrating ossification. Stain Technol 13:77–79CrossRefGoogle Scholar
  10. 10.
    Williams TW Jr (1941) Alizarin red S and toluidine blue for differentiating adult or embryonic bone and cartilage. Stain Technol 16:23–25CrossRefGoogle Scholar
  11. 11.
    Hood RCWS, Neill WM (1948) A modification of Alizarin red S technic for demonstrating bone formation. Stain Technol 23:209–218CrossRefGoogle Scholar
  12. 12.
    Sedra SN (1950) Decreasing the time required for making an Alizarin skeleton preparation. Stain Technol 25:223–224CrossRefGoogle Scholar
  13. 13.
    St. Amand GS, St. Amand W (1951) Shortening maceration time for Alizarin red S preparations. Stain Technol 26:271CrossRefGoogle Scholar
  14. 14.
    Crary DD (1962) Modified benzyl alcohol clearing of Alizarin-stained specimens without loss of flexibility. Stain Technol 37:124–125CrossRefGoogle Scholar
  15. 15.
    Staples RE, Schnell VL (1964) Refinements in rapid clearing technic in the KOH-Alizarin red S method for fetal bone. Stain Technol 39:61–63PubMedGoogle Scholar
  16. 16.
    Burdi AR (1965) Toluidine blue-Alizarin red S staining of cartilage and bone in whole-mount skeletons in vitro. Stain Technol 40:45–48CrossRefGoogle Scholar
  17. 17.
    Jensh RP, Brent RL (1966) Rapid schedules for KOH clearing and alizarin red S staining of fetal rat bone. Stain Technol 41:179–183CrossRefGoogle Scholar
  18. 18.
    Ojeda JL, Barbosa E, Bosque PG (1970) Selective skeletal staining in whole chicken embryos; a rapid Alcian blue technique. Stain Technol 45:137–138CrossRefGoogle Scholar
  19. 19.
    Kimmel CA, Trammell C (1981) A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol 56:271–273CrossRefGoogle Scholar
  20. 20.
    Wassersug RJ (1976) A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technol 51:131–134CrossRefGoogle Scholar
  21. 21.
    Dingerkus G, Uhler LD (1977) Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232CrossRefGoogle Scholar
  22. 22.
    Dingerkus G (1981) The use of various alcohols for Alcian blue in toto staining of cartilage. Stain Technol 56:128–129CrossRefGoogle Scholar
  23. 23.
    Hanken J, Wassersug RJ (1981) The visible skeleton. Funct Photog 16(22–26):44Google Scholar
  24. 24.
    Kelly WL, Bryden MM (1983) A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technol 58:131–134CrossRefGoogle Scholar
  25. 25.
    de Beer G (1937) The development of the vertebrate skull. University of Chicago Press, ChicagoGoogle Scholar
  26. 26.
    Goodrich ES (1958) Studies on the structure and development of vertebrates. Dover Publications, New YorkGoogle Scholar
  27. 27.
    Jollie M (1962) Chordate morphology. Reinhold, New YorkCrossRefGoogle Scholar
  28. 28.
    Gregory WK (1933) Fish skulls: a study of the evolution of natural mechanisms. Trans Am Philos Soc 23:75–481CrossRefGoogle Scholar
  29. 29.
    Schultze H-P (1993) Patterns of diversity in the skulls of jawed fishes. In: Hanken J, Hall BK (eds) The skull, vol. 2: patterns of structural and systematic diversity. University of Chicago Press, Chicago, pp 189–254Google Scholar
  30. 30.
    Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic Press, New YorkGoogle Scholar
  31. 31.
    Trueb L (1993) Patterns of cranial diversity among the Lissamphibia. In: Hanken J, Hall BK (eds) The skull, vol. 2: patterns of structural and systematic diversity. University of Chicago Press, ChicagoGoogle Scholar
  32. 32.
    Romanoff AL (1960) The avian embryo: structural and functional development. Macmillan, New YorkGoogle Scholar
  33. 33.
    Zusi RL (1993) Patterns of diversity in the avian skull. In: Hanken J, Hall BK (eds) The skull, vol. 2: patterns of structural and systematic diversity. University of Chicago Press, ChicagoGoogle Scholar
  34. 34.
    Moore WJ (1981) The mammalian skull, Biological structure and function: 8. Cambridge University Press, New YorkGoogle Scholar
  35. 35.
    Novacek MJ (1993) Patterns of diversity in the mammalian skull. In: Hanken J, Hall BK (eds) The skull, vol 2: patterns of structural and systematic diversity. University of Chicago Press, Chicago, pp 438–545Google Scholar
  36. 36.
    Schilling TF, Piotrowski T, Grandel H, Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Hammerschmidt M, Kane DA, Mullins MC, van Eeden FJ, Kelsh RN, Furutani-Seiki M, Granato M, Haffter P, Odenthal J, Warga RM, Trowe T, Nusslein-Volhard C (1996) Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123:329–344PubMedGoogle Scholar
  37. 37.
    Lemnius L (1581) De Miracules Occultis Naturae, Ex. Officina Christophori Platini, AntwerpGoogle Scholar
  38. 38.
    Belchier J (1736) An account of the bones of animals being changed to a red colour by ailment only. Phil. Trans. R. Soc. London 39(287):1735–1736Google Scholar
  39. 39.
    Cumley RW, Crow JF, Griffin AB (1939) Clearing specimens for demonstration of bone. Stain Technol 14:7–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Anatomy, Institute for Cell and NeurobiologyCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Instituto de Biomedicina y Biotecnología de CantabriaUniversidad de Cantabria-CSIC-SODERCANSantanderSpain

Personalised recommendations