Advertisement

Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation

  • Martin E. Barrios-LlerenaEmail author
  • Thierry Le Bihan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1977)

Abstract

Phosphorylation events are important during cellular function. Analysis of phosphorylation in complex samples has been extensively studied using large-scale phosphopeptide enrichment methods. Quantitative analysis of the enriched phosphopeptides is subsequently performed using label-based methodologies (e.g., SILAC, iTRAQ, and others). Here we describe the protocol for the quantitative analysis of phosphopeptides, enriched with titanium dioxide micro-column, using an intensity-based label-free quantitation.

Key words

Phosphopeptide enrichment Titanium dioxide chromatography (TiO2Label-free quantitation Mass spectrometry 

References

  1. 1.
    Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82(2–3):111–121CrossRefGoogle Scholar
  2. 2.
    Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886CrossRefGoogle Scholar
  3. 3.
    Thingholm TE, Jorgensen TJ, Jensen ON et al (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935CrossRefGoogle Scholar
  4. 4.
    Cantin GT, Yi W, Lu B et al (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7(3):1346–1351CrossRefGoogle Scholar
  5. 5.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386CrossRefGoogle Scholar
  6. 6.
    Altelaar AF, Frese CK, Preisinger C et al (2013) Benchmarking stable isotope labeling based quantitative proteomics. J Proteome 88:14–26CrossRefGoogle Scholar
  7. 7.
    Kwon OK, Kim SJ, Lee YM et al (2016) Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 16(1):136–149CrossRefGoogle Scholar
  8. 8.
    Cantin GT, Venable JD, Cociorva D et al (2006) Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway. J Proteome Res 5(1):127–134CrossRefGoogle Scholar
  9. 9.
    Hu X, Wu L, Zhao F et al (2015) Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Front Plant Sci 6:298PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nguyen TH, Brechenmacher L, Aldrich JT et al (2012) Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cell Proteomics 11(11):1140–1155CrossRefGoogle Scholar
  11. 11.
    Ma Q, Wu M, Pei W et al (2014) Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genomics 15:466CrossRefGoogle Scholar
  12. 12.
    Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21(22):3635–3645CrossRefGoogle Scholar
  13. 13.
    Thingholm TE, Larsen MR (2009) The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests. Methods Mol Biol 527:57–66. xiCrossRefGoogle Scholar
  14. 14.
    Le Bihan T, Hindle M, Martin SF et al (2015) Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri. Proteomics 15(23–24):4135–4144CrossRefGoogle Scholar
  15. 15.
    Hindle MM, Le Bihan T, Krahmer J et al (2016) qpMerge: merging different peptide isoforms using a motif centric strategy. bioRxiv 047100; https://doi.org/10.1101/047100

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Proteomics and Mass Spectrometry, Bioscience Core LabsKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations