Advertisement

Trajectory Algorithms to Infer Stem Cell Fate Decisions

  • Edroaldo Lummertz da Rocha
  • Mohan Malleshaiah
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1975)

Abstract

Single-cell trajectory analysis is an active research area in single-cell genomics aiming at developing sophisticated algorithms to reconstruct complex cell-state transition trajectories. Here, we present a step-by-step protocol to use CellRouter, a multifaceted single-cell analysis platform that integrates subpopulation identification, gene regulatory networks, and trajectory inference to precisely and flexibly reconstruct complex single-cell trajectories. Subpopulations are either user-defined or identified by a graph-clustering approach in which a k-nearest neighbor graph (kNN) is created from cell-to-cell distances in a low-dimensional embedding. Edges in this graph are weighted by network similarity metrics (e.g., Jaccard index) to robustly encode phenotypic relatedness, creating a representation of single-cell transcriptomes suitable for community detection algorithms to identify clusters of densely connected cells. This subpopulation structure represents a map of putative cell-state transitions. CellRouter implements a flow network algorithm to explore this map and reconstruct cell-state transitions in complex single-cell, multidimensional omics datasets. We describe a step-by-step application of CellRouter to hematopoietic stem and progenitor cell differentiation toward four major lineages—erythrocytes, megakaryocytes, monocytes, and granulocytes—to demonstrate key components of CellRouter for single-cell trajectory analysis.

Key words

Single-cell genomics Stem cell differentiation Trajectory reconstruction Cell fate transitions Hematopoietic stem cells Single-cell analysis Computational biology Systems biology 

References

  1. 1.
    Kumar P, Tan Y, Cahan P (2017) Understanding development and stem cells using single cell-based analyses of gene expression. Development 144(1):17–32. http://dev.biologists.org/lookup/doi/10.1242/dev.133058PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wagner A, Regev A, Yosef N (2016) Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 34(11):1145–1160. http://www.nature.com/nbt/journal/v34/n11/full/nbt.3711.html?cookies=accepted%5Cn, http://www.nature.com/nbt/journal/v34/n11/pdf/nbt.3711.pdfPubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541(7637):331–338. http://www.nature.com/doifinder/10.1038/nature21350PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Stubbington MJT, Rozenblatt-rosen O, Regev A (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science 63(Mi):58–63CrossRefGoogle Scholar
  5. 5.
    Bendall SC, Davis KL, Amir EAD, Tadmor MD, Simonds EF, Chen TJ et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell 157(3):714–725.  https://doi.org/10.1016/j.cell.2014.04.005PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. http://www.ncbi.nlm.nih.gov/pubmed/24658644PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17(3):360–372.  https://doi.org/10.1016/j.stem.2015.07.013PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lummertz da Rocha E, Rowe RG, Lundin V, Malleshaiah M, Jha DK, Rambo CR et al (2018) Reconstruction of complex single-cell trajectories using CellRouter. Nat Commun 9(1):892PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA et al (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14(10):979–982. http://www.nature.com/doifinder/10.1038/nmeth.4402PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(April):1–14. http://www.nature.com/doifinder/10.1038/nbt.3569Google Scholar
  11. 11.
    Chen J, Schlitzer A, Chakarov S, Ginhoux F, Poidinger M (2016) Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nat Commun 7(May):11988. http://www.nature.com/doifinder/10.1038/ncomms11988PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13(10):845–848. http://www.nature.com/doifinder/10.1038/nmeth.3971.  https://doi.org/10.1101/041384%5CnCrossRefGoogle Scholar
  13. 13.
    Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L et al (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A 111(52):5643–5650CrossRefGoogle Scholar
  14. 14.
    Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM (2017). Fundamental limits on dynamic inference from single cell snapshots. bioRxiv. 170118. http://www.biorxiv.org/content/early/2017/08/23/170118
  15. 15.
    Sun N, Yu X, Li F, Liu D, Suo S, Chen W et al (2017) Inference of differentiation time for single cell transcriptomes using cell population reference data. Nat Commun 8(1):1–12.  https://doi.org/10.1038/s41467-017-01860-2CrossRefGoogle Scholar
  16. 16.
    Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-radji MA, Di LE et al (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358(December):1318–1323PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE et al (2017) Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356(6342):eaag3009PubMedCrossRefGoogle Scholar
  19. 19.
    Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N, Singh H et al (2016) Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537(7622):698–702. http://www.nature.com/doifinder/10.1038/nature19348PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Van Der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-sne. J Mach Learn Res 9:2579–2605. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7911431479148734548related:VOiAgwMNy20JGoogle Scholar
  21. 21.
    Levine JH, Simonds EF, Bendall SC, Davis KL, Amir EAD, Tadmor MD et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197.  https://doi.org/10.1016/j.cell.2015.05.047PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M et al (2016) Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5):1308–1323.e30.  https://doi.org/10.1016/j.cell.2016.07.054PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ et al (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33(2):155–160CrossRefGoogle Scholar
  24. 24.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502.  https://doi.org/10.1038/nbt.3192PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282):189–196. http://science.sciencemag.org.gate2.inist.fr/content/352/6282/189.abstractPubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nestorowa S, Hamey FK, Sala BP, Diamanti E, Shepherd M, Laurenti E et al (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128(8):20–32CrossRefGoogle Scholar
  27. 27.
    Grün D, Muraro MJ, Boisset JC, Wiebrands K, Lyubimova A, Dharmadhikari G et al (2016) De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19(2):266–277PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Soneson C, Robinson MD (2018) Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. http://www.nature.com/doifinder/10.1038/nmeth.4612
  29. 29.
    Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, et al. (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. http://www.nature.com/doifinder/10.1038/nature25741

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Edroaldo Lummertz da Rocha
    • 1
    • 2
    • 3
    • 4
  • Mohan Malleshaiah
    • 5
  1. 1.Stem Cell Transplantation Program, Division of Pediatric Hematology and OncologyBoston Children’s Hospital and Dana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  3. 3.Harvard Stem Cell InstituteCambridgeUSA
  4. 4.Manton Center for Orphan Disease ResearchBostonUSA
  5. 5.Division of Systems BiologyMontreal Clinical Research InstituteMontrealCanada

Personalised recommendations