Advertisement

The Control of Glucose and Lactate Levels in Nutrient Medium After Cell Incubation and in Microdialysates of Human Adipose Tissue by Capillary Electrophoresis with Contactless Conductivity Detection

  • Petr TůmaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1972)

Abstract

Two methods of capillary electrophoresis with contactless conductivity detection have been developed for monitoring the levels of glucose and lactate in clinical samples. The separations are performed in uncoated fused silica capillaries with inner diameter 10 or 20 μm, total length 31.5 cm, length to detector 18 cm, using an Agilent electrophoretic instrument with an integrated contactless conductivity detector. Glucose is determined in optimized background electrolyte, 50 mM NaOH with pH 12.6 and 2-deoxyglucose is used as an internal standard; the determination of lactate is performed in 40 mM CHES/NaOH with pH 9.4 and lithium cations as an internal standard. Both substances are determined in minimal volumes of (1) nutrient media after cell incubation, and (2) microdialysates of human adipose tissue; after dilution and filtration as the only treatment of the sample. The migration time of glucose is 2.5 min and that of lactate is 1.5 min with detection limits at the micromolar concentration level. The developed techniques are suitable for sequential monitoring of glucose and lactate over time during metabolic experiments.

Key words

Capillary electrophoresis Cell incubation Contactless conductivity detection Glucose Lactate Microdialysis Rapid determination 

Notes

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic, Grant No. 18-04902S.

References

  1. 1.
    Saylor RA, Lunte SM (2015) A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A 1382:48–64CrossRefGoogle Scholar
  2. 2.
    Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651(1):1–14CrossRefGoogle Scholar
  3. 3.
    Brunner M, Derendorf H (2006) Clinical microdialysis: current applications and potential use in drug development. TrAC Trends Anal Chem 25(7):674–680CrossRefGoogle Scholar
  4. 4.
    Rainville PD, Theodoridis G, Plumb RS, Wilson ID (2014) Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends Anal Chem 61:181–191CrossRefGoogle Scholar
  5. 5.
    Ban E, Park SH, Kang MJ, Lee HJ, Song EJ, Yoo YS (2012) Growing trend of CE at the omics level: the frontier of systems biology – an update. Electrophoresis 33(1):2–13CrossRefGoogle Scholar
  6. 6.
    Phillips TM (2018) Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 39(1):126–135CrossRefGoogle Scholar
  7. 7.
    Kubáň P, Hauser PC (2018) 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. TrAC Trends Anal Chem 102:311–321CrossRefGoogle Scholar
  8. 8.
    Kubáň P, Hauser PC (2017) Contactless conductivity detection for analytical techniques Developments from 2014 to 2016. Electrophoresis 38(1):95–114CrossRefGoogle Scholar
  9. 9.
    Šolínová V, Kašička V (2006) Recent applications of conductivity detection in capillary and chip electrophoresis. J Sep Sci 29(12):1743–1762CrossRefGoogle Scholar
  10. 10.
    Tůma P (2014) Large volume sample stacking for rapid and sensitive determination of antidiabetic drug metformin in human urine and serum by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 1345:207–211CrossRefGoogle Scholar
  11. 11.
    Tůma P, Gojda J (2015) Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 36(16):1969–1975CrossRefGoogle Scholar
  12. 12.
    Tůma P, Samcová E, Štulík K (2011) Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders. Anal Chim Acta 685(1):84–90CrossRefGoogle Scholar
  13. 13.
    Tůma P, Málková K, Samcová E, Štulík K (2011) Rapid monitoring of mono- and disaccharides in drinks, foodstuffs and foodstuff additives by capillary electrophoresis with contactless conductivity detection. Anal Chim Acta 698(1–2):1–5CrossRefGoogle Scholar
  14. 14.
    Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, Rodriguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100CrossRefGoogle Scholar
  15. 15.
    Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol-Cell Physiol 292(1):C125–C136CrossRefGoogle Scholar
  16. 16.
    Koppo K, Larrouy D, Marques MA, Berlan M, Bajzova M, Polak J, Van de Voorde J, Bulow J, Lafontan M, Crampes F, Langin D, Stich V, de Glisezinski I (2010) Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides. Am J Physiol-Endocrinol Metab 299(2):E258–E265CrossRefGoogle Scholar
  17. 17.
    Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic samples: from the patient to the laboratory. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Lauer HH, Rozing GP (2010) High performance capillary electrophoresis, a primer, 2nd edn. Agilent Technologies, GermanyGoogle Scholar
  19. 19.
    Jaroš M, Soga T, van de Goor T, Gaš B (2005) Conductivity detection in capillary zone electrophoresis: Inspection by PeakMaster. Electrophoresis 26(10):1948–1953CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hygiene, Third Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations