Advertisement

Aptamer-Based Microchip Electrophoresis Assays for Amplification Detection of Carcinoembryonic Antigen

  • Shulin Zhao
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1972)

Abstract

Microchip electrophoresis (MCE), regarded as a miniaturized version of capillary electrophoresis (CE), has exhibited prominent advantages in terms of low sample consumption, rapid analysis times, easy operation, efficient resolution of compounds, and increased throughput. This technology has led to more research focus on analysis particularly in hospital settings for clinical diagnostics. However, since the channels in microchip are very small, achieving the desired assay sensitivity on a microfluidic platform remains a challenge. Here, we describe aptamer-based MCE assays for amplification detection of carcinoembryonic antigen (CEA) in human serum.

Key words

Microchip electrophoresis Aptamer Laser induced fluorescence detection Carcinoembryonic antigen 

References

  1. 1.
    Kimura H, Matsuzawa S, Tu CY, Kitamori T, Sawada T (1996) Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy. 2. Quantitation of ultratrace carcinoembryonic antigen in human sera. Anal Chem 68:3063–3067CrossRefGoogle Scholar
  2. 2.
    Seker D, Kaya O, Adabag A, Necipoglu G, Baran I (2003) Role of preoperative plasma CA 15-3 and carcinoembryonic antigen levels in determining histopathologic conventional prognostic factors for breast cancer. World J Surg 27:519–521CrossRefGoogle Scholar
  3. 3.
    Shen GY, Wang H, Deng T, Shen GL, Yu RQ (2005) A novel piezoelectric immunosensor for detection of carcinoembryonic antigen. Talanta 67:217–220CrossRefGoogle Scholar
  4. 4.
    Liu Y, Jiang H (2006) Electroanalytical determination of carcinoembryonic antigen at a silica nanoparticles/titania sol-gel composite membrane-modified gold electrode. Electroanalysis 18:1007–1013CrossRefGoogle Scholar
  5. 5.
    Pan J, Yang QW (2007) Antibody-functionalized magnetic nanoparticles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device. Anal Bioanal Chem 388:279–286CrossRefGoogle Scholar
  6. 6.
    Walter K, Norbert N, Jochen S, Rudolf P, Herbert H (1988) Is there any clinical relevance of serial determinations of serum carcinoembryonic antigen in small cell lung cancer patients. Cancer 62:1348–1354CrossRefGoogle Scholar
  7. 7.
    Pergters J, Schmide-Gayk H, Peters B, Armbruster FP, Quentmeler A, Mathlas D (1989) lmmunoradiometric assay of carcinoembryonic antigen with use of avidin-biotin labeling. Clin Chem 35:573–576Google Scholar
  8. 8.
    Lin JH, Yan F, Ju HX (2004) Noncompetitive enzyme immunoassay for carcinoembryonic antigen by flow injection chemiluminescence. Clin Chim Acta 341:109–115CrossRefGoogle Scholar
  9. 9.
    Yuan JL, Wang GL, Majima K, Matsumoto K (2001) Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal Chem 73:1869–1876CrossRefGoogle Scholar
  10. 10.
    Dungchai W, Siangproh W, Lin JM, Chailapakul O, Lin S, Ying XT (2007) Development of a sensitive micro-magnetic chemiluminescence enzyme immunoassay for the determination of carcinoembryonic antigen. Anal Bioanal Chem 387:1965–1971CrossRefGoogle Scholar
  11. 11.
    Ye F, Shi M, Huang Y, Zhao S (2010) Noncompetitive immunoassay for carcinoembryonic antigen in human serum by microchip electrophoresis for cancer diagnosis. Clin Chim Acta 411:1058–1062CrossRefGoogle Scholar
  12. 12.
    Hou L, Tang Y, Xu M, Gao Z, Tang D (2014) Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation. Anal Chem 86:8352–8358CrossRefGoogle Scholar
  13. 13.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  14. 14.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843CrossRefGoogle Scholar
  15. 15.
    Xue L, Zhou X, Xing D (2012) Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 84:3507–3513CrossRefGoogle Scholar
  16. 16.
    Shang F, Guihen E, Glennon JD (2012) Recent advances in miniaturization-the role of microchip electrophoresis in clinical analysis. Electrophoresis 33:105–116CrossRefGoogle Scholar
  17. 17.
    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583CrossRefGoogle Scholar
  18. 18.
    Yang T, Vdovenko M, Jin X, Sakharov IY, Zhao S (2014) Highly sensitive microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer for the detection of neuron-specific enolase. Electrophoresis 35:2022–2028CrossRefGoogle Scholar
  19. 19.
    Fredlake CP, Hert DG, Root BE, Barron AE (2008) Polymer systems designed specifically for DNA sequencing by microchip electrophoresis: a comparison with commercially available materials. Electrophoresis 29:4652–4662CrossRefGoogle Scholar
  20. 20.
    Slagter-Jäger JG, Nicolette CA, Tcherepanova IY (2012) Evaluation of a microfluidics-based platform and slab electrophoresis for determination of size, integrity and quantification of in vitro transcribed RNA used as a component in therapeutic drug manufacturing. J Pharm Biomed Anal 70:657–663CrossRefGoogle Scholar
  21. 21.
    Jin S, Anderson GJ, Kennedy RT (2013) Western blotting using microchip electrophoresis interfaced to a protein capture membrane. Anal Chem 85:6073–6079CrossRefGoogle Scholar
  22. 22.
    Zhao S, Huang Y, Shi M, Liu YM (2009) Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection. J Chromatogr A 1216:5155–5159CrossRefGoogle Scholar
  23. 23.
    Bi S, Yan Y, Yang X, Zhang S (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J 15:4704–4709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shulin Zhao
    • 1
  1. 1.Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and PharmacyGuangxi Normal UniversityGuilinChina

Personalised recommendations