Advertisement

Leishmania pp 303-314 | Cite as

Syrian Hamster as an Advanced Experimental Model for Visceral Leishmaniasis

  • María Dolores Jiménez-Antón
  • Montserrat Grau
  • Ana Isabel Olías-Molero
  • José Mª AlundaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1971)

Abstract

Animal models are needed along the development and evaluation of potential chemotherapeutic agents against leishmaniasis. Infections of Syrian hamsters with Leishmania species causing visceral leishmaniasis (VL) closely mimic the disease in the natural hosts, including target organs, lesions, and clinical course. Therefore, despite some shortcomings (e.g., genetic background, price, and scarcity of reagents), it is probably the best laboratory rodent model of VL. However, handling of hamsters can be technically challenging because of their particular anatomy. Here, we describe in detail four different routes to establish an experimental VL in the hamster model using Leishmania promastigotes and amastigotes. Each route requires various manipulations and has different benefits and drawbacks. Choice of the most suitable route should be made by the researcher in accordance with the specific plan and purpose of the study.

Key words

Leishmania Visceral leishmaniasis Hamster Experimental infection Intraperitoneal Intracardiac Retro-orbital Intradermic Promastigotes Amastigotes 

Notes

Acknowledgments

This work has been partially funded by the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 603240 (NMTrypI—New Medicines for Trypanosomatidic Infections). http://www.nmtrypi.eu/. Collaboration with Evidence-Based Advisors (P + 3A) is acknowledged.

References

  1. 1.
    Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison C, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molteni V (2014) Recent developments in drug discovery for Leishmaniasis and human African Trypanosomiasis. Chem Rev 114(22):11305–11347CrossRefGoogle Scholar
  2. 2.
    World Health Organization (2010) Control of Leishmaniases. Technol Rep Ser 949:1–186Google Scholar
  3. 3.
    Corral-Caridad MJ, Alunda JM (2013) Chemotherapy of leishmaniasis: a veterinary perspective. In: Jäger T, Koch O, Flohé L (eds) Trypanosomatid diseases. Molecular routes to drug discovery. Wiley-VCH, Weinheim, pp 17–36CrossRefGoogle Scholar
  4. 4.
    Nishi GS (2011) Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res 133(1):27–39PubMedCentralGoogle Scholar
  5. 5.
    Hommel M, Jaffe CL, Travi B, Milon G (1995) Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Ann Trop Med Parasitol 89(Suppl 1):55–73CrossRefGoogle Scholar
  6. 6.
    Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral Leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166:1912–1920CrossRefGoogle Scholar
  7. 7.
    Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223(4643):1417–1419CrossRefGoogle Scholar
  8. 8.
    Bates PA (1993) Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology 108:1–9CrossRefGoogle Scholar
  9. 9.
    Gonzaga M, Laranjeira MF, Andrade R, Marino R, Floeter-Winter LM (2011) Correlation of meta 1 expression with culture stage, cell morphology and infectivity in Leishmania (Leishmania) amazonensis promastigotes. Mem Inst Oswaldo Cruz 106(2):190–193CrossRefGoogle Scholar
  10. 10.
    Silva AM, Cordeiro-da-Silva A, Coombs GH (2011) Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS Negl Trop Dis 5(12):e1451CrossRefGoogle Scholar
  11. 11.
    Moreira N, Vitoriano-Souza J, Roatt BM, Vieira PM, Ker HG, de Oliveira Cardoso JM, Giunchetti RC, Carneiro CM, de Lana M, Reis AB (2012) Parasite burden in hamsters infected with two different strains of Leishmania (Leishmania) infantum: “Leishman Donovan units” versus real-time PCR. PLoS One 7(10):e47907CrossRefGoogle Scholar
  12. 12.
    Wyllie S, Fairlamb AH (2006) Refinement of techniques for the propagation of Leishmania donovani in hamsters. Acta Trop 97:364–369CrossRefGoogle Scholar
  13. 13.
    Moreira ND, Vitoriano-Souza J, Roatt BM, Vieira PM, Coura-Vital W, Cardoso JM, Rezende MT, Ker HG, Giunchetti RC, Carneiro CM, Reis AB (2016) Clinical, hematological and biochemical alterations in hamster (Mesocricetus auratus) experimentally infected with Leishmania infantum through different routes of inoculation. Parasit Vectors 31(9):181CrossRefGoogle Scholar
  14. 14.
    Kaur S, Kaur T, Garg N, Mukherjee S, Raina P, Athokpam V (2008) Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res 103:1413CrossRefGoogle Scholar
  15. 15.
    Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99:97–103CrossRefGoogle Scholar
  16. 16.
    Lei SM, Romine NM, Beetham JK (2010) Population changes in Leishmania chagasi promastigote developmental stages due to serial passage. J Parasitol 96(6):1134–1138CrossRefGoogle Scholar
  17. 17.
    Flecknell P, Lofgren J, Dyson M, Marini R, Swindle M (2015) Preanesthesia, Anesthesia, analgesia and euthanasia. In: Fox JG (ed) Laboratory animal medicine. Academic Press-Elsevier, London, pp 1135–1200CrossRefGoogle Scholar
  18. 18.
    U.S. Department of Health and Human Services (2009) Section VIII-C: parasitic agents. In: Biosafety in microbiological and biomedical laboratories. HHS Publication No. (CDC) 21–1112: 182–194Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Dolores Jiménez-Antón
    • 1
    • 2
  • Montserrat Grau
    • 2
  • Ana Isabel Olías-Molero
    • 1
    • 2
  • José Mª Alunda
    • 1
    • 2
    Email author
  1. 1.Department of Animal Health, ICPVet Research Group, Faculty of Veterinary MedicineUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Investigación Hospital 12 de OctubreMadridSpain

Personalised recommendations