Protocols for miRNA Target Prediction in Plants

  • Gaurav Sablok
  • Kun Yang
  • Xiaopeng Wen
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)


Next-generation sequencing has opened up new avenues for the identification of microRNAs (miRNAs) and their corresponding roles in abiotic and biotic stress responses. Recently, a plethora of evidence suggests a canonical action of miRNA–mRNA interactions to regulate plant systems biology at the posttranscriptional level, thus leading to the gain or loss of genetic adaptation in plants. In this chapter, we present a detailed protocol for the identification of miRNA targets using six different prediction tools.

Key words

MicroRNA Target prediction Arabidopsis thaliana TAPIR psRobot psRNATarget TarHunter Cleaveland 


  1. 1.
    Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190CrossRefGoogle Scholar
  2. 2.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520CrossRefGoogle Scholar
  3. 3.
    Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159CrossRefGoogle Scholar
  4. 4.
    Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121CrossRefGoogle Scholar
  5. 5.
    Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568CrossRefGoogle Scholar
  6. 6.
    Li F, Orban R, Baker B (2012) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70:891–901CrossRefGoogle Scholar
  7. 7.
    Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54CrossRefGoogle Scholar
  8. 8.
    Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219CrossRefGoogle Scholar
  9. 9.
    Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28CrossRefGoogle Scholar
  10. 10.
    Ma X, Liu C, Gu L, Mo B, Cao X, Chen X (2018) TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. Bioinformatics 34:1574–1576CrossRefGoogle Scholar
  11. 11.
    Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131CrossRefGoogle Scholar
  12. 12.
    Zhang L, Qin C, Mei J, Chen X, Wu Z, Luo X, Cheng J, Tang X, Hu K, Li SC (2017) Identification of microRNA targets of Capsicum spp. using MiRTrans—a trans-Omics approach. Front Plant Sci 8:495PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. In: Meyers B, Green P (eds) Plant MicroRNAs, Methods in molecular biology (methods and protocols), vol 592. Humana PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gaurav Sablok
    • 1
    • 2
  • Kun Yang
    • 3
  • Xiaopeng Wen
    • 3
  1. 1.Finnish Museum of Natural History (Botany)University of HelsinkiHelsinkiFinland
  2. 2.OEB Research Programme, Department of Biological and Environmental SciencesViikki Plant Science CenterHelsinkiFinland
  3. 3.Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life SciencesGuizhou UniversityGuiyangChina

Personalised recommendations