Advertisement

The Role of Tertiary Structure in MicroRNA Target Recognition

  • Hin Hark Gan
  • Kristin C. GunsalusEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)

Abstract

Translational repression and degradation of transcripts by microRNAs (miRNAs) is mediated by a ribonucleoprotein complex called the miRNA-induced silencing complex (miRISC, or RISC). Advances in experimental determination of RISC structures have enabled detailed analysis and modeling of known miRNA targets, yet a full appreciation of the structural factors influencing target recognition remains a challenge, primarily because target recognition involves a combination of RNA–RNA and RNA–protein interactions that can vary greatly among different miRNA–target pairs. In this chapter, we review progress toward understanding the role of tertiary structure in miRNA target recognition using computational approaches to assemble RISC complexes at known targets and physics-based methods for computing target interactions. Using this framework to examine RISC structures and dynamics, we describe how the conformational flexibility of Argonautes plays an important role in accommodating the diversity of miRNA–target duplexes formed at canonical and noncanonical target sites. We then discuss applications of tertiary structure-based approaches to emerging topics, including the structural effects of SNPs in miRNA targets and cooperative interactions involving Argonaute–Argonaute complexes. We conclude by assessing the prospects for genome-scale modeling of RISC structures and modeling of higher-order Argonaute complexes associated with miRNA biogenesis, mRNA regulation, and other functions.

Key words

MicroRNA miRNA target recognition Tertiary structure modeling Molecular dynamics Argonaute RISC RISC-SNPs 

References

  1. 1.
    Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593. https://doi.org/10.1038/nsmb.2296CrossRefPubMedGoogle Scholar
  2. 2.
    Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22(1):20–28. https://doi.org/10.1038/nsmb.2931CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Elkayam E, Faehnle CR, Morales M, Sun J, Li H, Joshua-Tor L (2017) Multivalent recruitment of human Argonaute by GW182. Mol Cell 67(4):646–658e643. https://doi.org/10.1016/j.molcel.2017.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, Sonenberg N (2011) miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 18(11):1211–1217. https://doi.org/10.1038/nsmb.2149CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456(7224):921–926CrossRefGoogle Scholar
  6. 6.
    Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461(7265):754–761CrossRefGoogle Scholar
  7. 7.
    Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486(7403):368–374CrossRefGoogle Scholar
  8. 8.
    Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336(6084):1037–1040. https://doi.org/10.1126/science.1221551CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3(6):1901–1909. https://doi.org/10.1016/j.celrep.2013.05.033CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ming D, Wall ME, Sanbonmatsu KY (2007) Domain motions of Argonaute, the catalytic engine of RNA interference. BMC Bioinformatics 8:470. https://doi.org/10.1186/1471-2105-8-470CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gan HH, Gunsalus KC (2013) Tertiary structure-based analysis of microRNA-target interactions. RNA 19(4):539–551. https://doi.org/10.1261/rna.035691.112CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gan HH, Gunsalus KC (2015) Assembly and analysis of eukaryotic Argonaute-RNA complexes in microRNA-target recognition. Nucleic Acids Res 43(20):9613–9625. https://doi.org/10.1093/nar/gkv990CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leoni G, Tramontano A (2016) A structural view of microRNA-target recognition. Nucleic Acids Res 44(9):e82. https://doi.org/10.1093/nar/gkw043CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefGoogle Scholar
  15. 15.
    Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13CrossRefGoogle Scholar
  16. 16.
    Cao S, Chen SJ (2012) Predicting kissing interactions in microRNA-target complex and assessment of microRNA activity. Nucleic Acids Res 40:4681–4690. https://doi.org/10.1093/nar/gks052CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Parker JS, Parizotto EA, Wang M, Roe SM, Barford D (2009) Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell 33(2):204–214CrossRefGoogle Scholar
  18. 18.
    Kuhn CD, Joshua-Tor L (2013) Eukaryotic Argonautes come into focus. Trends Biochem Sci 38(5):263–271. https://doi.org/10.1016/j.tibs.2013.02.008CrossRefPubMedGoogle Scholar
  19. 19.
    Parker JS (2010) How to slice: snapshots of Argonaute in action. Silence 1(1):3CrossRefGoogle Scholar
  20. 20.
    Wang Y, Li Y, Ma Z, Yang W, Ai C (2010) Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis. PLoS Comput Biol 6(7):e1000866CrossRefGoogle Scholar
  21. 21.
    Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39(2):292–299. https://doi.org/10.1016/j.molcel.2010.05.015CrossRefPubMedGoogle Scholar
  22. 22.
    Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S (2015) Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 59(1):117–124. https://doi.org/10.1016/j.molcel.2015.04.027CrossRefPubMedGoogle Scholar
  23. 23.
    Flamand MN, Gan HH, Mayya VK, Gunsalus KC, Duchaine TF (2017) A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Res 45(12):7212–7225. https://doi.org/10.1093/nar/gkx340CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Broderick JA, Salomon WE, Ryder SP, Aronin N, Zamore PD (2011) Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA 17(10):1858–1869. https://doi.org/10.1261/rna.2778911CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17(2):173–179CrossRefGoogle Scholar
  26. 26.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486CrossRefGoogle Scholar
  27. 27.
    Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N (2014) Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol Cell 54(6):1042–1054. https://doi.org/10.1016/j.molcel.2014.03.049CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141(1):129–141. https://doi.org/10.1016/j.cell.2010.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665. https://doi.org/10.1016/j.cell.2013.03.043CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc 9(3):711–728. https://doi.org/10.1038/nprot.2014.043CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Parisien M, Major F (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183):51–55CrossRefGoogle Scholar
  32. 32.
    Pappu RV, Hart RK, Ponder JW (1998) Analysis and application of potential energy smoothing and search methods for global optimization. J Phys Chem B 102(48):9725–9742CrossRefGoogle Scholar
  33. 33.
    Tidor B, Karplus M (1994) The contribution of vibrational entropy to molecular association. The dimerization of insulin. J Mol Biol 238(3):405–414CrossRefGoogle Scholar
  34. 34.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. https://doi.org/10.1038/nrg3462CrossRefPubMedGoogle Scholar
  35. 35.
    Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39:23–42CrossRefGoogle Scholar
  36. 36.
    Tama F, Valle M, Frank J, Brooks CL (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci U S A 100(16):9319–9323CrossRefGoogle Scholar
  37. 37.
    Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32(Web Server issue):W610–W614. https://doi.org/10.1093/nar/gkh368CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tama F, Wriggers W, Brooks CL (2002) Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 321(2):297–305CrossRefGoogle Scholar
  39. 39.
    Baker NA (2004) Poisson-Boltzmann methods for biomolecular electrostatics. Methods Enzymol 383:94–118CrossRefGoogle Scholar
  40. 40.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284CrossRefGoogle Scholar
  41. 41.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85CrossRefGoogle Scholar
  42. 42.
    Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393CrossRefPubMedGoogle Scholar
  43. 43.
    Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, Guo AY (2015) An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database 2015:bav029. https://doi.org/10.1093/database/bav029CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402. https://doi.org/10.1038/nrc2867CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24(10):489–497. https://doi.org/10.1016/j.tig.2008.07.004CrossRefPubMedGoogle Scholar
  46. 46.
    Sabarinathan R, Wenzel A, Novotny P, Tang X, Kalari KR, Gorodkin J (2014) Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One 9(1):e82699. https://doi.org/10.1371/journal.pone.0082699CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Battle A, Brown CD, Engelhardt BE, Montgomery SB (2017) Genetic effects on gene expression across human tissues. Nature 550(7675):204–213. https://doi.org/10.1038/nature24277CrossRefPubMedGoogle Scholar
  48. 48.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431CrossRefGoogle Scholar
  49. 49.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4. https://doi.org/10.7554/eLife.05005
  50. 50.
    Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky N (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16(5):460–471CrossRefGoogle Scholar
  51. 51.
    Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J (2012) A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19(2):176–183. https://doi.org/10.1038/nsmb.2214CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433. https://doi.org/10.1146/annurev.cellbio.23.090506.123326CrossRefPubMedGoogle Scholar
  53. 53.
    Doxzen KW, Doudna JA (2017) DNA recognition by an RNA-guided bacterial Argonaute. PLoS One 12(5):e0177097. https://doi.org/10.1371/journal.pone.0177097CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Miyoshi T, Ito K, Murakami R, Uchiumi T (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 7:11846. https://doi.org/10.1038/ncomms11846CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507(7491):258–261. https://doi.org/10.1038/nature12971CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A 111(2):652–657. https://doi.org/10.1073/pnas.1321032111CrossRefPubMedGoogle Scholar
  57. 57.
    Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional regulation mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta 1839(11):1079–1083. https://doi.org/10.1016/j.bbagrm.2014.07.016CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA
  2. 2.Center for Genomics and Systems BiologyNYU Abu DhabiSaadiyat IslandUnited Arab Emirates

Personalised recommendations