Sfold Tools for MicroRNA Target Prediction

  • William Rennie
  • Shaveta Kanoria
  • Chaochun Liu
  • C. Steven Carmack
  • Jun Lu
  • Ye DingEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)


Computational prediction of miRNA binding sites on target mRNAs facilitates experimental investigation of miRNA functions. In this chapter, we describe STarMir and STarMirDB, two application modules of the Sfold RNA package. STarMir is a Web server for performing miRNA binding site predictions for mRNA and target sequences submitted by users. STarMirDB is a database of precomputed transcriptome-scale predictions. Both STarMir and STarMirDB provide comprehensive sequence, thermodynamic, and target structure features, a logistic probability as a measure of confidence for each predicted site, and a publication-quality diagram of the predicted miRNA–target hybrid. In addition, STarMir now offers a new quantitative score to address combined regulatory effects of multiple seed and seedless sites. This score provides a quantitative measure of the overall regulatory effects of both seed and seedless sites on the target. STarMir and STarMirDB are freely available to all through the Sfold Web application server at

Key words

miRNA CLIP Target mRNA RNA secondary structure miRNA binding site Efficacy Database Quantitative score 



The Bioinformatics Core at the Wadsworth Center is acknowledged for supporting computing resources for this work. This work is supported in part by the National Institutes of Health (grants GM099811, GM116855 to Y.D. and J. L.).


  1. 1.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  3. 3.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. Scholar
  4. 4.
    Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15(4):410–415. Scholar
  5. 5.
    Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59(2-3):101–114. Scholar
  6. 6.
    Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74(4):296–306. Scholar
  7. 7.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20CrossRefGoogle Scholar
  8. 8.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486. Scholar
  9. 9.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. Scholar
  10. 10.
    Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8(7):559–564. Scholar
  11. 11.
    Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17(2):173–179. Scholar
  12. 12.
    Liu C, Mallick B, Long D, Rennie WA, Wolenc A, Carmack CS, Ding Y (2013) CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res 41(14):e138. Scholar
  13. 13.
    Rennie W, Liu C, Carmack CS, Wolenc A, Kanoria S, Lu J, Long D, Ding Y (2014) STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res 42(Web Server issue):W114–W118. Scholar
  14. 14.
    Rennie W, Kanoria S, Liu C, Mallick B, Long D, Wolenc A, Carmack CS, Lu J, Ding Y (2016) STarMirDB: A database of microRNA binding sites. RNA Biol 13(6):554–560. Scholar
  15. 15.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. Scholar
  16. 16.
    Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15(8):1034–1050. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • William Rennie
    • 1
  • Shaveta Kanoria
    • 1
  • Chaochun Liu
    • 1
  • C. Steven Carmack
    • 1
  • Jun Lu
    • 2
  • Ye Ding
    • 1
    Email author
  1. 1.New York State Department of Health, Wadsworth CenterCenter for Medical ScienceAlbanyUSA
  2. 2.Department of Genetics, Yale Stem Cell CenterYale UniversityNew HavenUSA

Personalised recommendations