Advertisement

miRandb: A Metadatabase of Online Resources of miRNA and miRNA Targets

  • Seyed Hamid Aghaee-BakhtiariEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)

Abstract

MicroRNA (miRNA) studies deliver numerous types of information including miRNA identification, sequence of miRNAs, target prediction, roles in diseases, and interactions in signaling pathways. Considering the different types of miRNA data, the number of miRNA databases has been increasing quickly. While resources have been planned to simplify miRNA analysis, scientists are facing the challenging task of choosing the most proper tool to retrieve related information. In this chapter, we introduce the use of miRandb, a resource that we have established to present an outline of different types of miRNA online resources and to simplify finding the right miRNA information that scientists need for their research. miRandb offers a user-friendly platform to find related information about any miRNA data among more than 188 present miRNA databases. miRandb has an easy procedure, and information can be retrieved by miRNA category resources. Each database comprises numerous kinds of information including database activity, description, main and unique features, organism, URL, publication, category, published year, citations per year, last update, and relative popularity. miRandb provides several opportunities and facilitates access to diverse classes of microRNA resources. miRandb is available at http://miRandb.ir.

Key words

miRNA Metadatabase Online databases Web-accessible databases Online resources 

Notes

Acknowledgments

This research is supported by Mashhad University of Medical Sciences (No. 941245, 950909).

References

  1. 1.
    Zare M, Soleimani M, Akbarzadeh A, Bakhshandeh B, Aghaee-Bakhtiari SH, Zarghami N (2015) A novel protocol to differentiate induced pluripotent stem cells by neuronal microRNAs to provide a suitable cellular model. Chem Biol Drug Des 86(2):232–238. https://doi.org/10.1111/cbdd.12485CrossRefPubMedGoogle Scholar
  2. 2.
    Fallah P, Arefian E, Naderi M, Aghaee-Bakhtiari SH, Atashi A, Ahmadi K, Shafiee A, Soleimani M (2013) miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage. Mol Biol Rep 40(8):4713–4719. https://doi.org/10.1007/s11033-013-2567-6CrossRefPubMedGoogle Scholar
  3. 3.
    Rahimian A, Soleimani M, Kaviani S, Aghaee-Bakhtiari SH, Atashi A, Arefian E, Nikougoftar M (2011) Bypassing the maturation arrest in myeloid cell line U937 by over-expression of microRNA-424. Hematology 16(5):298–302. https://doi.org/10.1179/102453311X13085644680140CrossRefPubMedGoogle Scholar
  4. 4.
    Attar M, Arefian E, Nabiuni M, Adegani FJ, Bakhtiari SH, Karimi Z, Barzegar M, Soleimani M (2012) MicroRNA 17-92 expressed by a transposone-based vector changes expression level of cell-cycle-related genes. Cell Biol Int 36(11):1005–1012. https://doi.org/10.1042/CBI20110089CrossRefPubMedGoogle Scholar
  5. 5.
    Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Noorbakhsh F, Samiee SM, Fard-Esfahani P, Mahdian R (2016) Reproducible and reliable real-time PCR assay to measure mature form of miR-141. Appl Immunohistochem Mol Morphol 24(2):138–143. https://doi.org/10.1097/PAI.0000000000000169CrossRefPubMedGoogle Scholar
  6. 6.
    Aghaee-Bakhtiari SH, Arefian E, Naderi M, Noorbakhsh F, Nodouzi V, Asgari M, Fard-Esfahani P, Mahdian R, Soleimani M (2015) MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumour Biol 36(6):4203–4212. https://doi.org/10.1007/s13277-015-3057-3CrossRefPubMedGoogle Scholar
  7. 7.
    Arefian E, Kiani J, Soleimani M, Shariati SA, Aghaee-Bakhtiari SH, Atashi A, Gheisari Y, Ahmadbeigi N, Banaei-Moghaddam AM, Naderi M, Namvarasl N, Good L, Faridani OR (2011) Analysis of microRNA signatures using size-coded ligation-mediated PCR. Nucleic Acids Res 39(12):e80. https://doi.org/10.1093/nar/gkr214CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tan Gana NH, Victoriano AF, Okamoto T (2012) Evaluation of online miRNA resources for biomedical applications. Genes Cells 17(1):11–27. https://doi.org/10.1111/j.1365-2443.2011.01564.xCrossRefPubMedGoogle Scholar
  9. 9.
    Vlachos IS, Hatzigeorgiou AG (2013) Online resources for miRNA analysis. Clin Biochem 46(10–11):879–900. https://doi.org/10.1016/j.clinbiochem.2013.03.006CrossRefPubMedGoogle Scholar
  10. 10.
    Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD (2016) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44(1):24–44. https://doi.org/10.1093/nar/gkv1221CrossRefPubMedGoogle Scholar
  11. 11.
    Lukasik A, Wojcikowski M, Zielenkiewicz P (2016) Tools4miRs - one place to gather all the tools for miRNA analysis. Bioinformatics 32(17):2722–2724. https://doi.org/10.1093/bioinformatics/btw189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aghaee-Bakhtiari SH, Arefian E, Lau P (2017) miRandb: a resource of online services for miRNA research. Brief Bioinform. https://doi.org/10.1093/bib/bbw109
  13. 13.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. https://doi.org/10.1093/nar/gkt1181CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37(8):2419–2433. https://doi.org/10.1093/nar/gkp145CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW, Wang K (2013) A review of computational tools in microRNA discovery. Front Genet 4:81. https://doi.org/10.3389/fgene.2013.00081CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hammell M (2010) Computational methods to identify miRNA targets. Semin Cell Dev Biol 21(7):738–744. https://doi.org/10.1016/j.semcdb.2010.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G, Shen X (2010) A study of miRNAs targets prediction and experimental validation. Protein Cell 1(11):979–986. https://doi.org/10.1007/s13238-010-0129-4CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4. https://doi.org/10.7554/eLife.05005
  19. 19.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454. https://doi.org/10.1093/nar/gkl243CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schmitz U, Wolkenhauer O (2013) Web resources for microRNA research. Adv Exp Med Biol 774:225–250. https://doi.org/10.1007/978-94-007-5590-1_12CrossRefPubMedGoogle Scholar
  21. 21.
    Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697. https://doi.org/10.1038/nmeth.3485CrossRefPubMedGoogle Scholar
  22. 22.
    Min H, Yoon S (2010) Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42(4):233–244. https://doi.org/10.3858/emm.2010.42.4.032CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ritchie W, Flamant S, Rasko JE (2010) mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26(2):223–227. https://doi.org/10.1093/bioinformatics/btp649CrossRefPubMedGoogle Scholar
  24. 24.
    Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43(Database issue):D153–D159. https://doi.org/10.1093/nar/gku1215CrossRefPubMedGoogle Scholar
  25. 25.
    Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M (2009) MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 37(Web Server issue):W266–W272. https://doi.org/10.1093/nar/gkp412CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Le Bechec A, Portales-Casamar E, Vetter G, Moes M, Zindy PJ, Saumet A, Arenillas D, Theillet C, Wasserman WW, Lecellier CH, Friederich E (2011) MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinformatics 12:67. https://doi.org/10.1186/1471-2105-12-67CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lagana A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, Pulvirenti A, Shasha D, Ferro A (2009) miRo: a miRNA knowledge base. Database (Oxford) 2009:bap008. https://doi.org/10.1093/database/bap008CrossRefGoogle Scholar
  28. 28.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–D104. https://doi.org/10.1093/nar/gkn714CrossRefPubMedGoogle Scholar
  29. 29.
    Chiromatzo AO, Oliveira TY, Pereira G, Costa AY, Montesco CA, Gras DE, Yosetake F, Vilar JB, Cervato M, Prado PR, Cardenas RG, Cerri R, Borges RL, Lemos RN, Alvarenga SM, Perallis VR, Pinheiro DG, Silva IT, Brandao RM, Cunha MA, Giuliatti S, Silva WA Jr (2007) miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res 6(4):859–865PubMedGoogle Scholar
  30. 30.
    Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466. https://doi.org/10.1093/nar/gkv403CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38(Web Server issue):W352–W359. https://doi.org/10.1093/nar/gkq423CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang GT, Athanassiou C, Benos PV (2011) mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res 39(Web Server issue):W416–W423. https://doi.org/10.1093/nar/gkr276CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P (2010) DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 38(Web Server issue):W385–W391. https://doi.org/10.1093/nar/gkq392CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q (2013) mirTools 2.0 for non-coding RNA discovery, profiling and functional annotation based on high-throughput sequencing. RNA Biol 10(7):1087–1092CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioinformatics Research CenterMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Medical Biotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations