Advertisement

Mass Spectrometry to Study the Bacterial Proteome from a Single Colony

  • Jianwei Zhou
  • Lu Zhang
  • Huixia Chuan
  • Angela Sloan
  • Raymond Tsang
  • Keding ChengEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1968)

Abstract

Mass spectrometry (MS) has been widely used in recent years for bacterial identification and typing. Single bacterial colonies are regarded as pure cultures of bacteria grown from single cells. In this chapter, we describe a method for identifying bacteria at the species level with 100% accuracy using the proteomes of bacterial cultures from single colonies. In this chapter, six reference strains of gram-negative and gram-positive bacteria are analyzed, producing results of high reproducibility, as examples of bacterial identification through the application of liquid chromatography–tandem mass spectrometry (LC-MS/MS) and a custom database. Details on sample preparation and identification of Streptococcus pneumoniae are also described.

Key words

Bacterial identification Mass spectrometry Streptococcus pneumoniae LC-MS/MS Single colonies 

Notes

Acknowledgments

We thank Stuart McCorrister and Chris Grant in the Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada for creating the database and running the MS.

References

  1. 1.
    Cheng K, Chui H, Domish L et al (2016) Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 10:346–357.  https://doi.org/10.1002/prca.201500086CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cheng K, Sloan A, Peterson L, McCorrister S et al (2014) Comparative study of traditional flagellum serotyping and liquid chromatography-tandem mass spectrometry-based flagellum typing with clinical Escherichia coli isolates. J Clin Microbiol 52(6):2275–2278.  https://doi.org/10.1128/JCM.00174-14CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chui H, Chan M, Hernandez D et al (2015) Rapid, sensitive, and specific Escherichia coli H antigen typing by matrix-assisted laser desorption ionization-time of flight-based peptide mass fingerprinting. J Clin Microbiol 53(8):2480–2485.  https://doi.org/10.1128/JCM.00593-15CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cheng K, She YM, Chui H et al (2016) Mass spectrometry-based Escherichia coli H antigen/flagella typing: validation and comparison with traditional serotyping. Clin Chem 62(6):839–847.  https://doi.org/10.1373/clinchem.2015.244236CrossRefPubMedGoogle Scholar
  5. 5.
    Cheng K, Sloan A, McCorrister S et al (2014) Quality evaluation of LC-MS/MS-based E. coli H antigen typing (MS-H) through label-free quantitative data analysis in a clinical sample setup. Proteomics Clin Appl 8:963–970.  https://doi.org/10.1002/prca.201400019CrossRefPubMedGoogle Scholar
  6. 6.
    Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimationof absolute protein amount in proteomics by the number of sequencedpeptides per protein. Mol Cell Proteomics 4(9):1265–1272.  https://doi.org/10.1074/mcp.M500061-MCP200CrossRefPubMedGoogle Scholar
  7. 7.
    Tracz DM, McCorrister SJ, Chong PM et al (2013) A simple shotgun proteomics method for rapid bacterial identification. J Microbiol Methods 94(1):54–57.  https://doi.org/10.1016/j.mimet.2013.04.008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianwei Zhou
    • 1
  • Lu Zhang
    • 2
  • Huixia Chuan
    • 2
  • Angela Sloan
    • 1
  • Raymond Tsang
    • 1
  • Keding Cheng
    • 1
    • 3
    Email author
  1. 1.National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegCanada
  2. 2.Henan Center for Disease Control and PreventionZhengzhouPeople’s Republic of China
  3. 3.Department of Human Anatomy and Cell Sciences, College of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations