Advertisement

Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions

  • Christopher P. Jones
  • Grzegorz Piszczek
  • Adrian R. Ferré-D’AmaréEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1964)

Abstract

One of the many ways by which bacteria control gene expression is through cis-acting regulatory mRNA elements called riboswitches. By specifically binding to small molecules or metabolites and pairing the binding event to an RNA structure change, riboswitches link a metabolic input to a transcriptional or translational output. For over a decade, isothermal titration calorimetry (ITC) has been used to investigate how riboswitches interact with small molecules. We present methods for assaying RNA-ligand interactions using ITC and analyzing resulting data to estimate thermodynamic parameters associated with binding.

Key words

Riboswitch Isothermal titration calorimetry RNA folding Heat capacity 

Notes

Acknowledgments

We thank S. Bachas, M. Chen, N. Demeshkina, C. Fagan, T. Numata, Lj. Sjekloca, and R. Trachman III for helpful discussions. This work was partially supported by the intramural program of the NHLBI, NIH, and by a Lenfant Biomedical Fellowship to C.P.J.

References

  1. 1.
    Liberman JA, Bogue JT, Jenkins JL, Salim M, Wedekind JE (2014) ITC analysis of ligand binding to preQ(1) riboswitches. Methods Enzymol 549:435–450CrossRefGoogle Scholar
  2. 2.
    Gilbert SD, Batey RT (2009) Monitoring RNA-ligand interactions using isothermal titration calorimetry. Methods Mol Biol 540:97–114CrossRefGoogle Scholar
  3. 3.
    Jones CP, Ferré-D’Amaré AR (2015) RNA quaternary structure and global symmetry. Trends Biochem Sci 40:211–220CrossRefGoogle Scholar
  4. 4.
    Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24CrossRefGoogle Scholar
  5. 5.
    Batey RT (2012) Structure and mechanism of purine-binding riboswitches. Q Rev Biophys 45:345–381CrossRefGoogle Scholar
  6. 6.
    Jones CP, Ferre-D’Amare AR (2017) Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys 46:455–481CrossRefGoogle Scholar
  7. 7.
    Chauvier A, Picard-Jean F, Berger-Dancause JC, Bastet L, Naghdi MR, Dube A, Turcotte P, Perreault J, Lafontaine DA (2017) Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat Commun 8:13892CrossRefGoogle Scholar
  8. 8.
    Caron MP, Bastet L, Lussier A, Simoneau-Roy M, Masse E, Lafontaine DA (2012) Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci U S A 109:E3444–E3453CrossRefGoogle Scholar
  9. 9.
    Jones CP, Ferré-D’Amaré AR (2014) Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692–2703CrossRefGoogle Scholar
  10. 10.
    Jones CP, Ferré-D’Amaré AR (2015) Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains. Nat Struct Mol Biol 22:679–685CrossRefGoogle Scholar
  11. 11.
    Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137CrossRefGoogle Scholar
  12. 12.
    Indyk L, Fisher HF (1998) Theoretical aspects of isothermal titration calorimetry. Methods Enzymol 295:350–364CrossRefGoogle Scholar
  13. 13.
    Zhang J, Jones CP, Ferré-D’Amaré AR (2014) Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochim Biophys Acta 1839:1020–1029CrossRefGoogle Scholar
  14. 14.
    Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073CrossRefGoogle Scholar
  15. 15.
    Zhao H, Piszczek G, Schuck P (2015) SEDPHAT – a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76:137–148CrossRefGoogle Scholar
  16. 16.
    Tellinghuisen J (2005) Optimizing experimental parameters in isothermal titration calorimetry. J Phys Chem B 109:20027–20035CrossRefGoogle Scholar
  17. 17.
    Baird NJ, Inglese J, Ferré-D’Amaré AR (2015) Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes. Nat Commun 6:8898CrossRefGoogle Scholar
  18. 18.
    Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1268CrossRefGoogle Scholar
  19. 19.
    Tan A, Tanner JJ, Henzl MT (2008) Energetics of OCP1-OCP2 complex formation. Biophys Chem 134:64–71CrossRefGoogle Scholar
  20. 20.
    Holley RW, Apgar J, Merrill SH (1961) Evidence for the liberation of a nuclease from human fingers. J Biol Chem 236:PC42–PC43PubMedGoogle Scholar
  21. 21.
    Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798CrossRefGoogle Scholar
  22. 22.
    Ferré-D’Amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978CrossRefGoogle Scholar
  23. 23.
    Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272CrossRefGoogle Scholar
  24. 24.
    Helmling C, Keyhani S, Sochor F, Furtig B, Hengesbach M, Schwalbe H (2015) Rapid NMR screening of RNA secondary structure and binding. J Biomol NMR 63:67–76CrossRefGoogle Scholar
  25. 25.
    Da Veiga C, Mezher J, Dumas P, Ennifar E (2016) Isothermal titration calorimetry: assisted crystallization of RNA-ligand complexes. Methods Mol Biol 1320:127–143CrossRefGoogle Scholar
  26. 26.
    Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866CrossRefGoogle Scholar
  27. 27.
    Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christopher P. Jones
    • 1
  • Grzegorz Piszczek
    • 2
  • Adrian R. Ferré-D’Amaré
    • 1
    Email author
  1. 1.Biochemistry and Biophysics CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUSA
  2. 2.Biophysics Core FacilityNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations