Advertisement

Tinkering with Binding Polynomials in Isothermal Titration Calorimetry

  • Rafael Claveria-Gimeno
  • Sonia Vega
  • Olga Abian
  • Adrian Velazquez-CampoyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1964)

Abstract

Isothermal titration calorimetry (ITC) has become the preferred experimental technique for characterizing intermolecular interactions between biological molecules. Among the several advantages, the use of natural non-labeled molecules and the determination of the complete thermodynamic profile for the interaction in solution remain as the primary features that have promoted ITC to the forefront of experimental biophysics. The experimental design in ITC may range from studying a simple direct binary macromolecule-ligand interaction to studying the homotropic or heterotropic cooperative effect between ligands when interacting with a given macromolecule. The theory of the binding polynomial has proven to be an appropriate unifying framework for handling the complexities that can be encountered when studying macromolecule-ligand interactions, though it has been deemed troublesome. The goal of this chapter is to provide a quite simple and widely available set of training experiments aimed at mastering the formalism of the binding polynomial applied to isothermal titration calorimetry.

Key words

Isothermal titration calorimetry Binding polynomial Binding equilibrium Heterotropic cooperativity Competitive binding Nonlinear square regression analysis 

Notes

Acknowledgments

This work was supported by Spanish Ministerio de Economia y Competitividad [BFU2013-47064-P and BFU2016-78232 to AVC]; Fondo de Investigaciones Sanitarias [PI15/00663 and PI18/00349 to OA]; Spanish Ministerio de Educacion, Cultura y Deporte [FPU13/3870 to RCG]; Miguel Servet Program from Instituto de Salud Carlos III [CPII13/0017 to OA]; Diputacion General de Aragon [B136/13 to RCG, Digestive Pathology Group B01 to OA and RCG, Protein Targets Group B89 to AVC]; Centro de Investigacion Biomedica en Red en Enfermedades Hepaticas y Digestivas (CIBERehd); and Asociacion Española de Gastroenterologia (AEG).

References

  1. 1.
    Freire E (2015) The binding thermodynamics of drug candidates. In: Keseru GM, Swinney DC (eds) Thermodynamics and kinetics of drug binding, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Kawasaki Y, Freire E (2011) Finding a better path to drug selectivity. Drug Disc Today 16:985–990CrossRefGoogle Scholar
  3. 3.
    Schön A, Madani N, Smith AB, Lalonde JM, Freire E (2011) Some binding-related drug properties are dependent on thermodynamic signature. Chem Biol Drug Des 77:161–165CrossRefGoogle Scholar
  4. 4.
    Velazquez-Campoy A, Goñi G, Peregrina JR, Medina M (2006) Exact analysis of heterotropic interactions in proteins: Characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J 91:1887–1904CrossRefGoogle Scholar
  5. 5.
    Velazquez-Campoy A (2016) Allostery and cooperative interactions in proteins assessed by isothermal titration calorimetry. In: Bastos M (ed) Biocalorimetry: foundations and contemporary approaches. CRC Press, Boca Raton, pp 223–246CrossRefGoogle Scholar
  6. 6.
    Gill SJ (1989) Thermodynamics of ligand binding to proteins. Pure Appl Chem 61:1009–1020CrossRefGoogle Scholar
  7. 7.
    Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science Books, Mill ValleyGoogle Scholar
  8. 8.
    Freire E, Schön A, Velazquez-Campoy A (2009) Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol 455:127–155CrossRefGoogle Scholar
  9. 9.
    Vega S, Abian O, Velazquez-Campoy A (2015) A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods 76:99–115CrossRefGoogle Scholar
  10. 10.
    Zhang YL, Zhang ZY (1998) Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Anal Biochem 261:139–148CrossRefGoogle Scholar
  11. 11.
    Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol 293:971–985CrossRefGoogle Scholar
  12. 12.
    Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277:260–266CrossRefGoogle Scholar
  13. 13.
    Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol Unit 17(8):1–24Google Scholar
  14. 14.
    Velazquez-Campoy A, Leavitt SA, Freire E (2015) Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 1278:183–204CrossRefGoogle Scholar
  15. 15.
    Griko YV (1999) Energetics of Ca(2+)-EDTA interactions: calorimetric study. Biophys Chem 79:117–127CrossRefGoogle Scholar
  16. 16.
    Arias-Moreno X, Cuesta-Lopez S, Millet O, Sancho J, Velazquez-Campoy A (2010) Thermodynamics of protein-cation interaction: Ca(+2) and Mg(+2) binding to the fifth binding module of the LDL receptor. Proteins 78:950–961CrossRefGoogle Scholar
  17. 17.
    Hinz HJ, Shiao DDF, Sturtevant JM (1971) Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry 10:1347–1352CrossRefGoogle Scholar
  18. 18.
    Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370CrossRefGoogle Scholar
  19. 19.
    Krainer G, Keller S (2015) Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76:116–123CrossRefGoogle Scholar
  20. 20.
    Houtman JC, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 16:30–42CrossRefGoogle Scholar
  21. 21.
    ITC data analysis in Origin (2004) Tutorial guide. Malvern-MicroCalGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rafael Claveria-Gimeno
    • 1
    • 2
    • 3
  • Sonia Vega
    • 1
  • Olga Abian
    • 1
    • 2
    • 3
    • 4
    • 5
  • Adrian Velazquez-Campoy
    • 1
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFIUniversidad de ZaragozaZaragozaSpain
  2. 2.Instituto Aragonés de Ciencias de la Salud (IACS)ZaragozaSpain
  3. 3.Aragon Institute for Health Research (IIS Aragon)ZaragozaSpain
  4. 4.Department of Biochemistry and Molecular and Cell BiologyUniversidad de ZaragozaZaragozaSpain
  5. 5.Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd)BarcelonaSpain
  6. 6.Fundacion ARAID, Government of AragonZaragozaSpain

Personalised recommendations