Advertisement

Analysis of Isothermal Titration Calorimetry Data for Complex Interactions Using I2CITC

  • Ibrahim Q. Saeed
  • Niklaas J. BuurmaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1964)

Abstract

I2CITC allows the analysis of isothermal titration calorimetry (ITC) data for complex coupled equilibria. Here we describe how, using I2CITC, ITC data for systems involving a self-aggregating ligand and a host offering one or two binding sites can be analyzed, how interaction models can be tested, and how confidence intervals for the optimized parameters can be determined.

Key words

Isothermal titration calorimetry ITC Data analysis I2CITC Confidence interval Complex equilibrium systems Thermodynamics 

Notes

Acknowledgment

Users of ICITC and I2CITC, past and present, are thanked for their feedback and questions which have contributed to the improvement of the software over the years.

References

  1. 1.
    Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137CrossRefGoogle Scholar
  2. 2.
    Jelesarov I, Crane-Robinson C, Privalov PL (1999) The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J Mol Biol 294:981–995CrossRefGoogle Scholar
  3. 3.
    Ward WHJ, Holdgate GA (2001) Isothermal titration calorimetry in drug discovery. Prog Med Chem 38:309–376CrossRefGoogle Scholar
  4. 4.
    Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18CrossRefGoogle Scholar
  5. 5.
    O'Brien R, Haq I (2004) Applications of biocalorimetry: binding, stability and enzyme kinetics. In: Biocalorimetry 2: applications of calorimetry in the biological sciences. Wiley & Sons, Hoboken, NJGoogle Scholar
  6. 6.
    Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566CrossRefGoogle Scholar
  7. 7.
    Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein-protein interactions. Methods 19:213–221CrossRefGoogle Scholar
  8. 8.
    Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801CrossRefGoogle Scholar
  9. 9.
    Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–151CrossRefGoogle Scholar
  10. 10.
    Cooper A, Johnson CM (1994) Isothermal titration microcalorimetry. Methods Mol Biol 22:137–150PubMedGoogle Scholar
  11. 11.
    www.affinimeter.com, Accessed July 2017
  12. 12.
    Buurma NJ, Haq I (2008) Calorimetric and spectroscopic studies of Hoechst 33258: self-association and binding to non-cognate DNA. J Mol Biol 381:607–621CrossRefGoogle Scholar
  13. 13.
    Buurma NJ, Haq I (2007) Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions. Methods 42:162–172CrossRefGoogle Scholar
  14. 14.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680CrossRefGoogle Scholar
  15. 15.
    Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  16. 16.
    Berendsen HJC (2011) A student's guide to data and error analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Hahn L, Buurma NJ, Gade LH (2016) A water-soluble tetraazaperopyrene dye as strong G-quadruplex DNA binder. Chem Eur J 22:6314–6322CrossRefGoogle Scholar
  18. 18.
    Saeed HK, Saeed IQ, Buurma NJ, Thomas JA (2017) Chem Eur J 23:5467–5477CrossRefGoogle Scholar
  19. 19.
    Cao T, Zhang FT, Cai LY, Zhou YL, Buurma NJ, Zhang XX (2017) Investigation of the interactions between methylene blue and intramolecular G-quadruplexes: an explicit distinction in electrochemical behavior. Analyst 142:987–993CrossRefGoogle Scholar
  20. 20.
    Wheelhouse RT, Garbett NC, Buurma NJ, Chaires JB (2010) Probing the molecular recognition of a DNA.RNA hybrid duplex. Angew Chem Int Ed 49:3207–3210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceSalahaddin UniversityErbilIraq
  2. 2.Physical Organic Chemistry Centre, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations