Advertisement

Ancient DNA pp 45-55 | Cite as

Extraction of Ancient DNA from Plant Remains

  • Nathan Wales
  • Logan KistlerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1963)

Abstract

Ancient plant remains from archaeological sites, paleoenvironmental contexts, and herbaria provide excellent opportunities for interrogating plant genetics over Quaternary timescales using ancient DNA (aDNA)-based analyses. A variety of plant tissues, preserved primarily by desiccation and anaerobic waterlogging, have proven to be viable sources of aDNA. Plant tissues are anatomically and chemically diverse and therefore require optimized DNA extraction approaches. Here, we describe a plant DNA isolation protocol that performs well in most contexts. We include recommendations for optimization to retain the very short DNA fragments that are expected to be preserved in degraded tissues.

Key words

Ancient plant DNA DNA extraction Archaeogenomics Archaeobotany Paleoethnobotany 

Notes

Acknowledgments

N.W. was supported by the National Science Foundation (Award number DEB-1354622).

References

  1. 1.
    Brown TA et al (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobotany 24:207–214CrossRefGoogle Scholar
  2. 2.
    Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166(2):409–418CrossRefGoogle Scholar
  3. 3.
    Palmer SA, Smith O, Allaby RG (2012) The blossoming of plant archaeogenetics. Ann Anat 20:146–156CrossRefGoogle Scholar
  4. 4.
    Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany 17(2):233–244CrossRefGoogle Scholar
  5. 5.
    Wales N, Andersen K, Cappellini E (2014) Ancient biomolecules from archaeobotanical remains. In: Marston JM, d’Alpoim Guedes J, Warinner C (eds) Method and theory in paleoethnobotany. University Press of Colorado, Boulder, pp 293–313Google Scholar
  6. 6.
    Cappellini E, Collins MJ, Gilbert MTP (2014) Unlocking ancient protein palimpsests. Science 343(6177):1320–1322CrossRefGoogle Scholar
  7. 7.
    Wagner S et al (2018) High-throughput DNA sequencing of ancient wood. Mol Ecol 27(5):1138–1154CrossRefGoogle Scholar
  8. 8.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  9. 9.
    Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79CrossRefGoogle Scholar
  10. 10.
    Gutaker RM et al (2017) Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques 62(2):76–79CrossRefGoogle Scholar
  11. 11.
    Dumolin-Lapègue S et al (1999) Amplification of oak DNA from ancient and modern wood. Mol Ecol 8(12):2137–2140CrossRefGoogle Scholar
  12. 12.
    Drábková L, Kirschner J, Vlĉek Ĉ (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of juncaceae. Plant Mol Biol Report 20(2):161–175CrossRefGoogle Scholar
  13. 13.
    Erickson DL et al (2005) An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci U S A 102(51):18315–18320CrossRefGoogle Scholar
  14. 14.
    Goloubinoff P, Pääbo S, Wilson AC (1993) Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A 90(5):1997–2001CrossRefGoogle Scholar
  15. 15.
    Allaby RG et al (1997) Evidence for the survival of ancient DNA in charred wheat seeds from European archaeological sites. Anc Biomol 1(2):119–129Google Scholar
  16. 16.
    Manen JF et al (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30(6):721–729CrossRefGoogle Scholar
  17. 17.
    Bilgic H et al (2016) Ancient DNA from 8400 Year-Old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS One 11(3):e0151974CrossRefGoogle Scholar
  18. 18.
    Nistelberger HM et al (2016) The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains. Sci Reports 6:37347CrossRefGoogle Scholar
  19. 19.
    da Fonseca RR et al (2015) The origin and evolution of maize in the Southwestern United States. Nat Plants 1:14003CrossRefGoogle Scholar
  20. 20.
    Mascher M et al (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48(9):1089–1093CrossRefGoogle Scholar
  21. 21.
    Ramos-Madrigal J et al (2016) Genome sequence of a 5310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26(23):3195–3201CrossRefGoogle Scholar
  22. 22.
    Dabney J et al (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 110(39):15758–15763CrossRefGoogle Scholar
  23. 23.
    Wales N et al (2014) Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One 9(1):e86827CrossRefGoogle Scholar
  24. 24.
    Gilbert MTP et al (2004) Ancient mitochondrial DNA from hair. Curr Biol 14(12):R463–R464CrossRefGoogle Scholar
  25. 25.
    Wales N et al (2012) Choosing the best plant for the job: a cost-effective assay to prescreen ancient plant remains destined for shotgun sequencing. PLoS One 7(9):e45644CrossRefGoogle Scholar
  26. 26.
    Gamba C et al (2016) Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour 16(2):459–469CrossRefGoogle Scholar
  27. 27.
    Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb Protoc 2006(1):pdb.prot4455CrossRefGoogle Scholar
  28. 28.
    Wales N et al (2016) The limits and potential of paleogenomic techniques for reconstructing grapevine domestication. J Archaeol Sci 72:57–70CrossRefGoogle Scholar
  29. 29.
    Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139CrossRefGoogle Scholar
  30. 30.
    Gilbert MTP et al (2005) Assessing ancient DNA studies. Trends Ecol Evol 20(10):541–544CrossRefGoogle Scholar
  31. 31.
    Champlot S et al (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One 5(9):e13042CrossRefGoogle Scholar
  32. 32.
    Korlevic P et al (2015) Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 59(2):87–93CrossRefGoogle Scholar
  33. 33.
    Lazaridis I et al (2016) Genomic insights into the origin of farming in the ancient Near East. Nature 536(7617):419–424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Laboratory of Molecular Anthropology and Image SynthesisUniversity Paul SabatierToulouseFrance
  3. 3.Department of AnthropologyNational Museum of Natural History, Smithsonian InstitutionWashingtonUSA
  4. 4.Department of ArchaeologyUniversity of YorkYorkUK

Personalised recommendations