Chemical Modification of the N-Acetyl Moieties of Hyaluronic Acid from Streptococcus equi for Studies in Cytokine Production

  • Siziwe Bebe
  • Tassos AnastassiadesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1954)


Partial N-deacetylation and certain N-reacylations of low-molecular-weight hyaluronic acid (hyaluronan) abate its proinflammatory properties in mammalian systems. Here, we describe the treatment of bacterial hyaluronic acid by hydrazine or NaOH to yield smaller partially deacetylated polymers. These N-deacetylated polymers can be reacylated with acyl anhydrides to yield substituted hyaluronic acid derivatives of equivalent size and equimolar N-acyl substitutions.

Key words

Hyaluronic acid Hyaluronan Chemical N-acylation Streptococcus equi Proinflammatory cytokines 



This work was supported by National Sciences and Engineering Research Council of Canada (NSERC) Strategic Grant 381564-09.


  1. 1.
    Beaty NB, Mello RJ (1987) Extracellular mammalian polysaccharides: glycosaminoglycans and proteoglycans. J Chromatogr 418:187–222CrossRefGoogle Scholar
  2. 2.
    Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Ann Rev Biochem 75:39–68CrossRefGoogle Scholar
  3. 3.
    Widner B, Behr R, Von Dollen S et al (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752CrossRefGoogle Scholar
  4. 4.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  5. 5.
    Wang T, Jonsdottir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248CrossRefGoogle Scholar
  6. 6.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefGoogle Scholar
  7. 7.
    Cavalier-Smith T (2007) Evolution and relationships. In: Brodie J (ed) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton, FL USA, p 21CrossRefGoogle Scholar
  8. 8.
    Weldon S, Mitchell S, Kelleher D et al (2004) Conjugated linoleic acid and atherosclerosis: no effect on molecular markers of cholesterol homeostasis in THP-1 macrophages. Atherosclerosis 174:261–273CrossRefGoogle Scholar
  9. 9.
    Scheibner KA, Lutz MA, Boodoo S et al (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281CrossRefGoogle Scholar
  10. 10.
    Crescenzi V, Francescangeli A, Renier D et al (2002) New cross-linked and sulfated derivatives of partially deacetylated hyaluronan: synthesis and preliminary characterization. Biopolymers 64:86–94CrossRefGoogle Scholar
  11. 11.
    Crescenzi V, Francescangeli A, Segre A et al (2002) NMR structural study of hydrogels based on partially deacetylated hyaluronan. Macromol Biosci 2:272–279CrossRefGoogle Scholar
  12. 12.
    Wada T, Chirachanchai S, Izawa N (1994) Synthesis and properties of hyaluronic-acid conjugated nucleic-acid analogs: 1. synthesis of deacetylhyaluronan and introduction of nucleic-acid bases. J Bioact Compat Pol 9:429–447CrossRefGoogle Scholar
  13. 13.
    Anastassiades TP (1973) Effect of a synthetic hexosamine derivative on mucopolysaccharide synthesis by human capsule and synovium. Biochem Pharmacol 22:3013–3023CrossRefGoogle Scholar
  14. 14.
    Zhang W, Mu H, Zhang A (2013) A decrease in moisture absorption–retention capacity of N-deacetylation of hyaluronic acid. Glycoconj J 30:577–583CrossRefGoogle Scholar
  15. 15.
    Maharjan AS, Pilling D, Gomer RH (2011) High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS One 6:e26078CrossRefGoogle Scholar
  16. 16.
    Larionova NI, Zubaerova DK, Guranda DT et al (2009) Colorimetric assay of chitosan in presence of proteins and polyelectrolytes by using o-phthalaldehyde. Carbohydr Polym 75:724–727CrossRefGoogle Scholar
  17. 17.
    Cesaretti M, Luppi E, Maccari F et al (2003) A 96-well assay for uronic acid carbazole reaction. Carbohydr Polym 54:59–61CrossRefGoogle Scholar
  18. 18.
    Cowman MK, Chen CC, Pandya M et al (2011) Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 417:50–56CrossRefGoogle Scholar
  19. 19.
    Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23:37–45CrossRefGoogle Scholar
  20. 20.
    Babasola O, Rees-Milton KJ, Bebe S et al (2014) Chemically modified N-acylated hyaluronan fragments modulate proinflammatory cytokine production by stimulated human macrophages. J Biol Chem 289:24779–24791CrossRefGoogle Scholar
  21. 21.
    Roehm NW, Rodgers GH, Hatfield SM et al (1991) An improved colorimetric assay for cell-proliferation and viability utilizing the tetrazolium salt Xtt. J Immunol Methods 142:257–265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Medicine, Arthritis Research CentreQueen’s UniversityKingstonCanada

Personalised recommendations