Characterization of Arabinosyl Transfer Reactions in the Biosynthesis of Mycobacterial Cell Envelope (Lipo)Polysaccharides

  • Shiva Kumar Angala
  • Mary JacksonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1954)


d-Arabinofuranose is a major glycosyl constituent of mycobacteria found in two essential cell envelope heteropolysaccharides, arabinogalactan and lipoarabinomannan. Seven different arabinosyltransferases at least are required to synthesize the arabinan domain of these two major glycans. Because of their interest from the perspective of drug development, these enzymes have been the object of intense investigations. In this chapter, we describe the protocols used to perform nonradioactive arabinosyltransferase assays with synthetic acceptor and donor substrates and characterize the enzymatic products of the reactions by mass spectrometry.

Key words

Arabinosyltransferase d-Arabinose Mycobacteria Synthetic arabinoside acceptor Lipid donor 



Studies on mycobacterial arabinosyltransferases in the authors’ laboratory are supported by the National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH) grant AI064798. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.


  1. 1.
    World Health Organization (2016) Global tuberculosis report 2016. WHO PressGoogle Scholar
  2. 2.
    Queiroz A, Riley LW (2017) Bacterial immunostat: mycobacterium tuberculosis lipids and their role in the host immune response. Rev Soc Bras Med Trop 50:9–18CrossRefGoogle Scholar
  3. 3.
    Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63CrossRefGoogle Scholar
  4. 4.
    Lohrasbi V, Talebi M, Bialvaei AZ et al (2017) Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis 109:17–27CrossRefGoogle Scholar
  5. 5.
    Angala SK, Belardinelli JM, Huc-Claustre E et al (2014) The cell envelope glycoconjugates of mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 49:361–399CrossRefGoogle Scholar
  6. 6.
    Alderwick LJ, Seidel M, Sahm H et al (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in mycobacterium tuberculosis. J Biol Chem 281:15653–15661CrossRefGoogle Scholar
  7. 7.
    Shi L, Zhou R, Liu Z et al (2008) Transfer of the first arabinofuranose residue to galactan is essential for mycobacterium smegmatis viability. J Bact 190:5248–5255CrossRefGoogle Scholar
  8. 8.
    Seidel M, Alderwick LJ, Birch HL et al (2007) Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in corynebacterianeae, such as corynebacterium glutamicum and mycobacterium tuberculosis. J Biol Chem 282:14729–14740CrossRefGoogle Scholar
  9. 9.
    Birch HL, Alderwick LJ, Bhatt A et al (2008) Biosynthesis of mycobacterial arabinogalactan: identification of a novel α (1→3) arabinofuranosyltransferase. Mol Microbiol 69:1191–1206PubMedPubMedCentralGoogle Scholar
  10. 10.
    Škovierová H, Larrouy-Maumus G, Zhang J et al (2009) AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology 19:1235–1247CrossRefGoogle Scholar
  11. 11.
    Escuyer VE, Lety M-A, Torrelles JB et al (2001) The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of mycobacterium smegmatis arabinogalactan. J Biol Chem 276:48854–48862CrossRefGoogle Scholar
  12. 12.
    Jankute M, Alderwick LJ, Noack S et al (2016) Disruption of mycobacterial AftB results in complete loss of terminal β (1→2) arabinofuranose residues of lipoarabinomannan. ACS Chem Biol 12:183–190CrossRefGoogle Scholar
  13. 13.
    Alderwick LJ, Lloyd GS, Ghadbane H et al (2011) The C-terminal domain of the arabinosyltransferase mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLoS Pathog 7:e1001299CrossRefGoogle Scholar
  14. 14.
    Wolucka BA, McNeil MR, de Hoffmann E et al (1994) Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269:23328–23335PubMedGoogle Scholar
  15. 15.
    Makarov V, Manina G, Mikusova K et al (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804CrossRefGoogle Scholar
  16. 16.
    Christophe T, Jackson M, Jeon HK et al (2009) High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 5:e1000645CrossRefGoogle Scholar
  17. 17.
    Lee R, Mikusova K, Brennan PJ et al (1995) Synthesis of the arabinose donor. beta.-d-arabinofuranosyl-1-monophosphoryldecaprenol, development of a basic arabinosyl-transferase assay, and identification of ethambutol as an arabinosyl transferase inhibitor. J Am Chem Soc 117:11829–11832CrossRefGoogle Scholar
  18. 18.
    Scherman MS, Kalbe-Bournonville L, Bush D et al (1996) Polyprenylphosphate-pentoses in in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem 271:29652–29658CrossRefGoogle Scholar
  19. 19.
    Angala SK, McNeil MR, Zou L et al (2016) Identification of a novel mycobacterial activity which adds an arabinosyl residue to alpha-D-mannosyl residues. ACS Chem Biol 11:1518–1524CrossRefGoogle Scholar
  20. 20.
    Tam PH, Besra GS, Lowary TL (2008) Exploring the substrate specificity of a mycobacterial polyprenol monophosphomannose-dependent α-(1→6)-mannosyltransferase. Chem Bio Chem 9:267–278CrossRefGoogle Scholar
  21. 21.
    Liav A, Huang H, Ciepichal E et al (2006) Stereoselective synthesis of decaprenylphosphoryl β-D-arabinofuranose. Tetrahedron Lett 47:545–547CrossRefGoogle Scholar
  22. 22.
    Zhang J, Angala SK, Pramanik PK et al (2011) Reconstitution of functional mycobacterial arabinosyltransferase AftC proteoliposome and assessment of decaprenylphosphorylarabinose analogues as arabinofuranosyl donors. ACS Chem Biol 6:819–828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mycobacteria Research Laboratories, Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsUSA

Personalised recommendations