Advertisement

Lymphoma pp 139-155 | Cite as

Stereotyped B Cell Receptor Immunoglobulins in B Cell Lymphomas

  • Andreas Agathangelidis
  • Fotis Psomopoulos
  • Kostas Stamatopoulos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1956)

Abstract

Comprehensive analysis of the clonotypic B cell receptor immunoglobulin (BcR IG) gene rearrangement sequences in patients with mature B cell neoplasms has led to the identification of significant repertoire restrictions, culminating in the discovery of subsets of patients expressing highly similar, stereotyped BcR IG. This finding strongly supports selection by common epitopes or classes of structurally similar epitopes in the ontogeny of these tumors. BcR IG stereotypy was initially described in chronic lymphocytic leukemia (CLL), where the stereotyped fraction of the disease accounts for a remarkable one-third of patients. However, subsequent studies showed that stereotyped BcR IG are also present in other neoplasms of mature B cells, including mantle cell lymphoma (MCL) and splenic marginal zone lymphoma (SMZL). Subsequent cross-entity comparisons led to the conclusion that stereotyped IG are mostly “disease-specific,” implicating distinct immunopathogenetic processes. Interestingly, mounting evidence suggests that a molecular subclassification of lymphomas based on BcR IG stereotypy is biologically and clinically relevant. Indeed, particularly in CLL, patients assigned to the same subset due to expressing a particular stereotyped BcR IG display remarkably consistent biological background and clinical course, at least for major and well-studied subsets. Thus, the robust assignment to stereotyped subsets may assist in the identification of mechanisms underlying disease onset and progression, while also refining risk stratification. In this book chapter, we provide an overview of the recent BcR IG stereotypy studies in mature B cell malignancies and outline previous and current methodological approaches used for the identification of stereotyped IG.

Key words

Immunoglobulin gene VH CDR3 Antigen Pattern Stereotypy Subset Bioinformatics 

Notes

Acknowledgments

This work was supported in part by H2020 “AEGLE, An analytics framework for integrated and personalized healthcare services in Europe”, by the EU; “MEDGENET, Medical Genomics and Epigenomics Network” (No. 692298) by the EU; “TRANSCAN-179” NOVEL JTC 2016; and “Odysseus” implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). Andreas Agathangelidis is a recipient of a Fellowship for Postgraduate Research by the Hellenic Foundation for Research and Innovation.

References

  1. 1.
    Chiorazzi N, Ferrarini M (2003) B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 21:841–894.  https://doi.org/10.1146/annurev.immunol.21.120601.141018CrossRefPubMedGoogle Scholar
  2. 2.
    Stevenson FK, Sahota SS, Ottensmeier CH et al (2001) The occurrence and significance of V gene mutations in B cell-derived human malignancy. Adv Cancer Res 83:81–116CrossRefGoogle Scholar
  3. 3.
    Sutton LA, Agathangelidis A, Belessi C et al (2013) Antigen selection in B-cell lymphomas—tracing the evidence. Semin Cancer Biol 23(6):399–409.  https://doi.org/10.1016/j.semcancer.2013.07.006CrossRefPubMedGoogle Scholar
  4. 4.
    Dunn-Walters D, Thiede C, Alpen B et al (2001) Somatic hypermutation and B-cell lymphoma. Philos Trans R Soc Lond Ser B Biol Sci 356(1405):73–82.  https://doi.org/10.1098/rstb.2000.0751CrossRefGoogle Scholar
  5. 5.
    Ghia P, Granziero L, Chilosi M et al (2002) Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol 12(2):149–155.  https://doi.org/10.1006/scbi.2001.0423CrossRefPubMedGoogle Scholar
  6. 6.
    Scott DW, Gascoyne RD (2014) The tumour microenvironment in B cell lymphomas. Nat Rev Cancer 14(8):517–534.  https://doi.org/10.1038/nrc3774CrossRefPubMedGoogle Scholar
  7. 7.
    Burger JA, Chiorazzi N (2013) B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 34(12):592–601.  https://doi.org/10.1016/j.it.2013.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jerkeman M, Hallek M, Dreyling M et al (2017) Targeting of B-cell receptor signalling in B-cell malignancies. J Intern Med 282(5):415–428.  https://doi.org/10.1111/joim.12600CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fais F, Ghiotto F, Hashimoto S et al (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102(8):1515–1525.  https://doi.org/10.1172/JCI3009CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Damle RN, Wasil T, Fais F et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6):1840–1847PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hamblin TJ, Davis Z, Gardiner A et al (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854PubMedGoogle Scholar
  12. 12.
    Ghia P, Stamatopoulos K, Belessi C et al (2007) ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 21(1):1–3.  https://doi.org/10.1038/sj.leu.2404457CrossRefPubMedGoogle Scholar
  13. 13.
    Langerak AW, Davi F, Ghia P et al (2011) Immunoglobulin sequence analysis and prognostication in CLL: guidelines from the ERIC review board for reliable interpretation of problematic cases. Leukemia 25(6):979–984.  https://doi.org/10.1038/leu.2011.49CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenquist R, Ghia P, Hadzidimitriou A et al (2017) Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia 31(7):1477–1481.  https://doi.org/10.1038/leu.2017.125CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hallek M, Cheson BD, Catovsky D et al (2018) Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia. Blood 131:2745–2760.  https://doi.org/10.1182/blood-2017-09-806398CrossRefPubMedGoogle Scholar
  16. 16.
    Efremov DG, Ivanovski M, Siljanovski N et al (1996) Restricted immunoglobulin VH region repertoire in chronic lymphocytic leukemia patients with autoimmune hemolytic anemia. Blood 87(9):3869–3876PubMedGoogle Scholar
  17. 17.
    Johnson TA, Rassenti LZ, Kipps TJ (1997) Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol 158(1):235–246PubMedGoogle Scholar
  18. 18.
    Widhopf GF 2nd, Kipps TJ (2001) Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells. J Immunol 166(1):95–102CrossRefGoogle Scholar
  19. 19.
    Tobin G, Thunberg U, Johnson A et al (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101(12):4952–4957.  https://doi.org/10.1182/blood-2002-11-3485CrossRefGoogle Scholar
  20. 20.
    Ghiotto F, Fais F, Valetto A et al (2004) Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 113(7):1008–1016.  https://doi.org/10.1172/JCI19399CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Messmer BT, Albesiano E, Efremov DG et al (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 200(4):519–525.  https://doi.org/10.1084/jem.20040544CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tobin G, Thunberg U, Karlsson K et al (2004) Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 104(9):2879–2885.  https://doi.org/10.1182/blood-2004-01-0132CrossRefPubMedGoogle Scholar
  23. 23.
    Widhopf GF 2nd, Rassenti LZ, Toy TL et al (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104(8):2499–2504.  https://doi.org/10.1182/blood-2004-03-0818CrossRefPubMedGoogle Scholar
  24. 24.
    Stamatopoulos K, Belessi C, Hadzidimitriou A et al (2005) Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood 106(10):3575–3583.  https://doi.org/10.1182/blood-2005-04-1511CrossRefPubMedGoogle Scholar
  25. 25.
    Murray F, Darzentas N, Hadzidimitriou A et al (2008) Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 111(3):1524–1533.  https://doi.org/10.1182/blood-2007-07-099564CrossRefPubMedGoogle Scholar
  26. 26.
    Bomben R, Dal Bo M, Capello D et al (2009) Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol 144(4):492–506.  https://doi.org/10.1111/j.1365-2141.2008.07469.xCrossRefPubMedGoogle Scholar
  27. 27.
    Darzentas N, Hadzidimitriou A, Murray F et al (2010) A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 24(1):125–132.  https://doi.org/10.1038/leu.2009.186CrossRefPubMedGoogle Scholar
  28. 28.
    Stamatopoulos K, Belessi C, Moreno C et al (2007) Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 109(1):259–270.  https://doi.org/10.1182/blood-2006-03-012948CrossRefPubMedGoogle Scholar
  29. 29.
    Agathangelidis A, Darzentas N, Hadzidimitriou A et al (2012) Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 119(19):4467–4475.  https://doi.org/10.1182/blood-2011-11-393694CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Malcikova J, Stalika E, Davis Z et al (2014) The frequency of TP53 gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. Br J Haematol 166(4):621–625.  https://doi.org/10.1111/bjh.12893CrossRefPubMedGoogle Scholar
  31. 31.
    Navrkalova V, Young E, Baliakas P et al (2016) ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres. Haematologica 101(9):e369–e373.  https://doi.org/10.3324/haematol.2016.142968CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Strefford JC, Sutton LA, Baliakas P et al (2013) Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 27(11):2196–2199.  https://doi.org/10.1038/leu.2013.98CrossRefPubMedGoogle Scholar
  33. 33.
    Sutton LA, Young E, Baliakas P et al (2016) Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica 101(8):959–967.  https://doi.org/10.3324/haematol.2016.141812CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Papakonstantinou N, Ntoufa S, Chartomatsidou E et al (2013) Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol Med 19:115–123.  https://doi.org/10.2119/molmed.2013.00005CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kanduri M, Marincevic M, Halldorsdottir AM et al (2012) Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics 7(12):1435–1442.  https://doi.org/10.4161/epi.22901CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Arvaniti E, Ntoufa S, Papakonstantinou N et al (2011) Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients. Haematologica 96(11):1644–1652.  https://doi.org/10.3324/haematol.2011.044792CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ntoufa S, Vardi A, Papakonstantinou N et al (2012) Distinct innate immunity pathways to activation and tolerance in subgroups of chronic lymphocytic leukemia with distinct immunoglobulin receptors. Mol Med 18:1281–1291.  https://doi.org/10.2119/molmed.2011.00480CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ntoufa S, Papakonstantinou N, Apollonio B et al (2016) B cell anergy modulated by TLR1/2 and the miR-17 approximately 92 cluster underlies the indolent clinical course of chronic lymphocytic leukemia stereotyped subset #4. J Immunol 196(10):4410–4417.  https://doi.org/10.4049/jimmunol.1502297CrossRefPubMedGoogle Scholar
  39. 39.
    Minici C, Gounari M, Ubelhart R et al (2017) Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat Commun 8:15746.  https://doi.org/10.1038/ncomms15746CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Baliakas P, Agathangelidis A, Hadzidimitriou A et al (2015) Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood 125(5):856–859.  https://doi.org/10.1182/blood-2014-09-600874CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Baliakas P, Hadzidimitriou A, Sutton LA et al (2014) Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol 1(2):e74–e84.  https://doi.org/10.1016/S2352-3026(14)00005-2CrossRefPubMedGoogle Scholar
  42. 42.
    Del Giudice I, Chiaretti S, Santangelo S et al (2014) Stereotyped subset #1 chronic lymphocytic leukemia: a direct link between B-cell receptor structure, function, and patients’ prognosis. Am J Hematol 89(1):74–82.  https://doi.org/10.1002/ajh.23591CrossRefPubMedGoogle Scholar
  43. 43.
    Maura F, Cutrona G, Fabris S et al (2011) Relevance of stereotyped B-cell receptors in the context of the molecular, cytogenetic and clinical features of chronic lymphocytic leukemia. PLoS One 6(8):e24313.  https://doi.org/10.1371/journal.pone.0024313CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rossi D, Spina V, Cerri M et al (2009) Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res 15(13):4415–4422.  https://doi.org/10.1158/1078-0432.CCR-08-3266CrossRefPubMedGoogle Scholar
  45. 45.
    Xochelli A, Baliakas P, Kavakiotis I et al (2017) Chronic lymphocytic leukemia with mutated IGHV4-34 receptors: shared and distinct immunogenetic features and clinical outcomes. Clin Cancer Res 23(17):5292–5301.  https://doi.org/10.1158/1078-0432.CCR-16-3100CrossRefPubMedGoogle Scholar
  46. 46.
    Baliakas P, Mattsson M, Hadzidimitriou A et al (2018) No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica 103(4):e158–e161.  https://doi.org/10.3324/haematol.2017.182634CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stamatopoulos K, Agathangelidis A, Rosenquist R et al (2017) Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 31(2):282–291.  https://doi.org/10.1038/leu.2016.322CrossRefPubMedGoogle Scholar
  48. 48.
    Agathangelidis A, Bystry V, Hadzidimitriou A et al (2015) Higher-order immunoglobulin sequence relations for major subsets of chronic lymphocytic leukemia: uniqueness versus equivalence. In: Paper presented at the 20th congress of the European Hematology Association (EHA), ViennaGoogle Scholar
  49. 49.
    Camacho FI, Algara P, Rodriguez A et al (2003) Molecular heterogeneity in MCL defined by the use of specific VH genes and the frequency of somatic mutations. Blood 101(10):4042–4046.  https://doi.org/10.1182/blood-2002-11-3456CrossRefPubMedGoogle Scholar
  50. 50.
    Kienle D, Krober A, Katzenberger T et al (2003) VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood 102(8):3003–3009.  https://doi.org/10.1182/blood-2003-05-1383CrossRefPubMedGoogle Scholar
  51. 51.
    Orchard J, Garand R, Davis Z et al (2003) A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood 101(12):4975–4981.  https://doi.org/10.1182/blood-2002-06-1864CrossRefPubMedGoogle Scholar
  52. 52.
    Schraders M, Oeschger S, Kluin PM et al (2009) Hypermutation in mantle cell lymphoma does not indicate a clinical or biological subentity. Mod Pathol 22(3):416–425.  https://doi.org/10.1038/modpathol.2008.199CrossRefPubMedGoogle Scholar
  53. 53.
    Thorselius M, Walsh S, Eriksson I et al (2002) Somatic hypermutation and V(H) gene usage in mantle cell lymphoma. Eur J Haematol 68(4):217–224CrossRefGoogle Scholar
  54. 54.
    Walsh SH, Thorselius M, Johnson A et al (2003) Mutated VH genes and preferential VH3-21 use define new subsets of mantle cell lymphoma. Blood 101(10):4047–4054.  https://doi.org/10.1182/blood-2002-11-3479CrossRefPubMedGoogle Scholar
  55. 55.
    Hadzidimitriou A, Agathangelidis A, Darzentas N et al (2011) Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood 118(11):3088–3095.  https://doi.org/10.1182/blood-2011-03-343434CrossRefPubMedGoogle Scholar
  56. 56.
    Agathangelidis A, Hadzidimitriou A, Rosenquist R et al (2011) Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: implications for the origin and selection of the malignant cells. Semin Cancer Biol 21(5):299–307.  https://doi.org/10.1016/j.semcancer.2011.09.009CrossRefGoogle Scholar
  57. 57.
    Xochelli A, Sutton LA, Agathangelidis A et al (2015) Molecular evidence for antigen drive in the natural history of mantle cell lymphoma. Am J Pathol 185(6):1740–1748.  https://doi.org/10.1016/j.ajpath.2015.02.006CrossRefPubMedGoogle Scholar
  58. 58.
    Pouliou E, Xochelli A, Kanellis G et al (2017) Numerous ontogenetic roads to mantle cell lymphoma: immunogenetic and immunohistochemical evidence. Am J Pathol 187(7):1454–1458.  https://doi.org/10.1016/j.ajpath.2017.02.017CrossRefPubMedGoogle Scholar
  59. 59.
    Wang ML, Rule S, Martin P et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369(6):507–516.  https://doi.org/10.1056/NEJMoa1306220CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bikos V, Darzentas N, Hadzidimitriou A et al (2012) Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia 26(7):1638–1646.  https://doi.org/10.1038/leu.2012.3CrossRefPubMedGoogle Scholar
  61. 61.
    Zibellini S, Capello D, Forconi F et al (2010) Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica 95(10):1792–1796.  https://doi.org/10.3324/haematol.2010.025437CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kostareli E, Gounari M, Janus A et al (2012) Antigen receptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity. Leukemia 26(5):1127–1131.  https://doi.org/10.1038/leu.2011.311CrossRefPubMedGoogle Scholar
  63. 63.
    Xochelli A, Bikos V, Polychronidou E et al (2015) Unique versus common: disease-biased immunoglobulin gene repertoires along with public antigen receptor stereotypes in marginal zone B-cell lymphoproliferations. In: 57th ASH annual meeting, Orlando, FLGoogle Scholar
  64. 64.
    Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13(1):37–45CrossRefGoogle Scholar
  65. 65.
    Barrios Y, Jirholt P, Ohlin M (2004) Length of the antibody heavy chain complementarity determining region 3 as a specificity-determining factor. J Mol Recognit 17(4):332–338.  https://doi.org/10.1002/jmr.679CrossRefPubMedGoogle Scholar
  66. 66.
    Brochet X, Lefranc MP, Giudicelli V (2008) IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36(Web Server):W503–W508.  https://doi.org/10.1093/nar/gkn316CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Henikoff S, Henikoff JG (1993) Performance evaluation of amino acid substitution matrices. Proteins 17(1):49–61.  https://doi.org/10.1002/prot.340170108CrossRefPubMedGoogle Scholar
  68. 68.
    Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14(1):55–67CrossRefGoogle Scholar
  69. 69.
    Kirkham PM, Mortari F, Newton JA et al (1992) Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J 11(2):603–609CrossRefGoogle Scholar
  70. 70.
    Bystry V, Agathangelidis A, Bikos V et al (2015) ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics 31(23):3844–3846.  https://doi.org/10.1093/bioinformatics/btv456CrossRefPubMedGoogle Scholar
  71. 71.
    Polychronidou E, Kalamaras I, Agathangelidis A et al (2018) Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia. BMC Bioinformatics 19:414CrossRefGoogle Scholar
  72. 72.
    Langerak AW, Bruggemann M, Davi F et al (2017) High-throughput immunogenetics for clinical and research applications in immunohematology: potential and challenges. J Immunol 198(10):3765–3774.  https://doi.org/10.4049/jimmunol.1602050CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Andreas Agathangelidis
    • 1
  • Fotis Psomopoulos
    • 1
  • Kostas Stamatopoulos
    • 1
    • 2
  1. 1.Institute of Applied Biosciences, Centre for Research and Technology HellasThessalonikiGreece
  2. 2.Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden

Personalised recommendations