Advertisement

Isolation and Characterization of Extracellular Vesicles Derived from Trypanosoma cruzi

  • Izadora Volpato Rossi
  • Bruno Gavinho
  • Marcel Ivan Ramirez
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

Extracellular vesicles (EVs) are heterogeneous membrane-surrounded structures that participate in cellular communications, which comprise exosomes and microvesicles. These vesicles have different biogenesis, and their physiological and pathological roles in chronic and infectious diseases are under constant investigation. In Chagas disease, Trypanosoma cruzi EVs have been described using different approaches. The isolation of T. cruzi-derived EVs has been done mainly using the differential centrifugation technique, and different strategies have been employed for characterization of them. Here, we describe the method to isolate EVs by differential centrifugation and a detection protocol for EVs in T. cruzi-host cell interaction to allow further investigations about this parasite.

Key words

Extracellular vesicles Exosomes Microvesicles Trypanosoma cruzi Chagas disease Cellular communication Ultracentrifugation Host–pathogen interaction 

References

  1. 1.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228CrossRefGoogle Scholar
  2. 2.
    Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188CrossRefGoogle Scholar
  3. 3.
    Silveira JF, Abrahamsohn PA, Colli W (1979) Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 550:522–532Google Scholar
  4. 4.
    Gonçalves MF, Umezawa ES, Katzin AM et al (1991) Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol 72:43–53CrossRefGoogle Scholar
  5. 5.
    Ouaissi MA, Dubremetz JF, Kusnierz JP et al (1990) Trypanosoma cruzi: differential expression and distribution of an 85-kDa polypeptide epitope by in vitro developmental stages. Exp Parasitol 71:207–217CrossRefGoogle Scholar
  6. 6.
    Ouaissi A, Aguirre T, Plumas-Marty B et al (1992) Cloning and sequencing of a 24-kDa Trypanosoma cruzi specific antigen released in association with membrane vesicles and defined by a monoclonal antibody. Biol Cell 75:11–17CrossRefGoogle Scholar
  7. 7.
    Cestari I, Ansa-Addo E, Deolindo P et al (2012) Trypanosoma cruzi immune evasion mediated by host cell derived microvesicles. J Immunol 188:1942–1952CrossRefGoogle Scholar
  8. 8.
    Neves RFC, Fernandes ACS (2014) Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 113:2961–2972CrossRefGoogle Scholar
  9. 9.
    Ramirez MI, Deolindo P, Messias-Reason IJ et al (2017) Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol 19(4):e12672CrossRefGoogle Scholar
  10. 10.
    Wyllie MP, Ramirez MI (2017) Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process. Pathog Dis 75:1–10CrossRefGoogle Scholar
  11. 11.
    Ribeiro KS, Vasconcellos CI, Soares RP et al (2018) Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 7:1–14Google Scholar
  12. 12.
    Torrecilhas ACT, Tonelli RR, Pavanelli WR et al (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11:29–39CrossRefGoogle Scholar
  13. 13.
    Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SL et al (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12:883–897CrossRefGoogle Scholar
  14. 14.
    Gaur P, Chaturvedi A (2016) Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease. PeerJ 1:16Google Scholar
  15. 15.
    Bautista-López N, Ndao M, Camargo FV et al (2017) Characterization and diagnostic application of Trypanosoma cruzi trypomastigote excreted-secreted antigens shed in extracellular vesicles released from infected mammalian cells. J Clin Microbiol 55:744–758CrossRefGoogle Scholar
  16. 16.
    Bayer-Santos E, Lima FM, Jeronimo CR et al (2014) Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles. Mol Biochem Parasitol 193:71–74CrossRefGoogle Scholar
  17. 17.
    Fernandez-Calero T, Garcia-Silva R, Pena A et al (2015) Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature. Mol Biochem Parasitol 199:19–28CrossRefGoogle Scholar
  18. 18.
    Garcia-Silva MR, Cabrera-Cabrera F, Neves RFC et al (2014) Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. Biomed Res Int 2014:1–11CrossRefGoogle Scholar
  19. 19.
    Nogueira PM, Ribeiro K, Silveira ACO et al (2015) Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles 4:1–16Google Scholar
  20. 20.
    Chowdhury I, Koo S, Gupta S et al (2017) Gene expression profiling and functional characterization of macrophages in response to circulatory microparticles produced during Trypanosoma cruzi infection and Chagas disease. J Innate Immun 9:203–216CrossRefGoogle Scholar
  21. 21.
    Gardiner C, Vizio D, Sahoo S et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:1–6Google Scholar
  22. 22.
    Momen-Heravi F (2017) Isolation of extracellular vesicles by ultracentrifugation. Extracellular vesicles: methods and protocols. Methods Mol Biol 1660:25–32CrossRefGoogle Scholar
  23. 23.
    Furi I, Momen-Heravi F, Szabo G (2017) Extracellular vesicle isolation: present and future. Ann Transl Med 5:263–265CrossRefGoogle Scholar
  24. 24.
    Oliveira-Rodríguez M, Serrano-Pertierra E, García AC et al (2017) Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens Bioelectron 87:38–45.  https://doi.org/10.1016/j.bios.2016.08.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Chernyshev VS, Rachamadugu R, Tseng YH et al (2015) Size and shape characterization of hydrated and desiccated exosomes. Anal Bioanal Chem 407(12):3285–3301CrossRefGoogle Scholar
  26. 26.
    Nolan JP (2015) Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.1–13.14.16.  https://doi.org/10.1002/0471142956.cy1314s73 CrossRefGoogle Scholar
  27. 27.
    Welsh JA, Holloway JA, Wilkinson JS, Englyst NA (2017) Extracellular vesicle flow cytometry analysis and standardization. Front Cell Dev Biol 5:78.  https://doi.org/10.3389/fcell.2017.00078 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ramirez MI, Amorim MG, Gadelha C et al (2018) Technical challenges of working with extracellular vesicles. Nanoscale 3:1–26CrossRefGoogle Scholar
  29. 29.
    Andreu Z, Yáñez-Mó M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442.  https://doi.org/10.3389/fimmu.2014.00442 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicles subtypes. PNAS 113:E968–E977CrossRefGoogle Scholar
  31. 31.
    Willms E, Cabañas C, Mäger I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738.  https://doi.org/10.3389/fimmu.2018.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lotval J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:1–7Google Scholar
  33. 33.
    Mateescu B, Kowal ELK, Balkom BWM (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 6:1–35Google Scholar
  34. 34.
    Heraszti RA, Didiot MC, Sapp E et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:3–14Google Scholar
  35. 35.
    Rosa-Fernandes L, Rocha VB, Carregari VC et al (2017) A perspective on extracellular vesicles proteomics. Front Chem 5:1–19CrossRefGoogle Scholar
  36. 36.
    Lai CP, Tannous BA, Breakefield XO (2014) Noninvasive in vivo monitoring of extracellular vesicles. Methods Mol Biol 1098:249–258CrossRefGoogle Scholar
  37. 37.
    Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:1–26Google Scholar
  38. 38.
    Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232CrossRefGoogle Scholar
  39. 39.
    Marcilla A, Martin-Jaular L, Trelis M et al (2014) Extracellular vesicles in parasitic diseases. J Extracell Vesicles 3:1Google Scholar
  40. 40.
    Gavinho B, Rossi IV, Evan-Osses I et al (2018) A new landscape of host-protozoa interactions involving the extracellular vesicles world. Parasitology 10:1–10.  https://doi.org/10.1017/S0031182018001105 CrossRefGoogle Scholar
  41. 41.
    Buzás EA, Gardiner C, Lee C et al (2017) Single particle analysis: methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry). Platelets 3:249–255.  https://doi.org/10.1080/09537104.2016.1260704 CrossRefGoogle Scholar
  42. 42.
    Barteneva NS, Fasler-Kan E, Bernimoulin M et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:1–21CrossRefGoogle Scholar
  43. 43.
    Wisgrill L, Lamm C, Hartmann J et al (2016) Peripheral blood microvesicles secretion is influenced by storage time, temperature and anticoagulants. Cytometry A 89:663–672CrossRefGoogle Scholar
  44. 44.
    Shelke GV, Lasser C, Gho YS et al (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3:24783.  https://doi.org/10.3402/jev.v3.24783 CrossRefGoogle Scholar
  45. 45.
    Lorincz AM, Timár CI, Marosvári KA et al (2014) Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles 3:1–8Google Scholar
  46. 46.
    Rupert DLM, Claudio V, Lässer C et al (2017) Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta 1861:3164–3179.  https://doi.org/10.1016/j.bbagen.2016.07.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Izadora Volpato Rossi
    • 1
    • 3
  • Bruno Gavinho
    • 1
    • 3
  • Marcel Ivan Ramirez
    • 1
    • 2
  1. 1.Departamento de BioquímicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Fundação Instituto Oswaldo CruzRio de JaneiroBrazil
  3. 3.Programa de Pós-Graduação em Microbiologia, Patologia e Parasitologia da Universidade Federal do ParanáCuritibaBrazil

Personalised recommendations