Fluorescence Proteomic Technology to Analyze Peripheral Blood Mononuclear Cells in Chronic Chagas Disease

  • John E. Wiktorowicz
  • M. Paola Zago
  • Nisha J. GargEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)


The thiol moieties of cysteinyl residues in proteins undergo a number of modifications including nitrosylation, oxidation, persulfidation, sulfenylation, and others. These protein modifications may influence gain as well as loss of function in biological and disease conditions. Herein, we describe a quantitative approach that combines accurate, sensitive fluorescence modification of cysteinyl-S-nitrosyl (SNOFlo) groups that leaves electrophoretic mobility unaffected and offers the measurement of changes in S-nitrosylation (SNO) status relative to protein abundance. This approach has been useful in evaluating the global protein abundance and SNO profile of Chagas seropositive individuals that were categorized in clinically asymptomatic (C/A) and clinically symptomatic (C/S) subgroups and compared to normal healthy (N/H) controls. Through analyzing the proteome datasets with different bioinformatics and statistics tools, potential pathologic mechanisms in disease progression are identified. We also propose a panel of protein biomarkers that have a potential to identify the infected individuals at risk of developing clinical Chagas disease.

Key words

Chagas cardiomyopathy Trypanosoma cruzi S-nitrosylation Peripheral blood mononuclear cells 2DE Mass spectrometry 


  1. 1.
    Mougabure-Cueto G, Picollo MI (2015) Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149:70–85. CrossRefPubMedGoogle Scholar
  2. 2.
    Gascon J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 115:22–27. S0001-706X(09)00199-5 [pii]. CrossRefPubMedGoogle Scholar
  3. 3.
    Coura JR, Dias JC (2009) Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 104(Suppl 1):31–40CrossRefGoogle Scholar
  4. 4.
    Bern C, Kjos S, MJ Y, Montgomery SP (2011) Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24(4):655–681. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM (2018) Pathology and pathogenesis of Chagas heart disease. Annu Rev Pathol. Oct 24. Print: Annu. Rev. Pathol. Mech. Dis. 2019, 14 (419–45). Google Scholar
  6. 6.
    del Puerto R, Nishizawa JE, Kikuchi M, Iihoshi N, Roca Y, Avilas C, Gianella A, Lora J, Velarde FU, Renjel LA, Miura S, Higo H, Komiya N, Maemura K, Hirayama K (2010) Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of Chagas disease in Bolivia. PLoS Negl Trop Dis 4:e687. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vázquez-Chagoyán JC, Gupta S, Garg NJ (2011) Vaccine development against Trypanosoma cruzi and Chagas disease. Adv Parasitol 75:121–146CrossRefGoogle Scholar
  8. 8.
    Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora J, Nascimento D, Nunes MC, Garg NJ, Ribeiro AL (2016) Developments in the manangement of chagasic cardiomyopathy. Expert Rev Cardiovasc Ther 13:1393–1409CrossRefGoogle Scholar
  9. 9.
    Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A Jr, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, Guhl F, Velazquez E, Bonilla L, Meeks B, Rao-Melacini P, Pogue J, Mattos A, Lazdins J, Rassi A, Connolly SJ, Yusuf S (2015) Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373:1295–1306. CrossRefPubMedGoogle Scholar
  10. 10.
    Gupta S, Wen JJ, Garg NJ (2009) Oxidative stress in Chagas disease. Interdiscip Perspect Infect Dis 2009:190354CrossRefGoogle Scholar
  11. 11.
    Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, Mukherjee S, Lisanti MP, Weiss LM, Garg NJ, Tanowitz HB (2012) Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 14:634–643CrossRefGoogle Scholar
  12. 12.
    Tanowitz HB, Wen JJ, Machado FS, Desruisseaux MS, Robello C, Garg NJ (2016) Trypanosoma cruzi and Chagas disease: innate immunity, ROS, and cardiovascular system. Academic, Waltham, MAGoogle Scholar
  13. 13.
    Lopez M, Tanowitz HB, Garg NJ (2018) Pathogenesis of chronic Chagas disease: macrophages, mitochondria, and oxidative stress. Curr Clin Microbiol Rep 5:45–54CrossRefGoogle Scholar
  14. 14.
    Wen J-J, Yachelini PC, Sembaj A, Manzur RE, Garg NJ (2006) Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Radic Biol Med 41:270–276CrossRefGoogle Scholar
  15. 15.
    Wen JJ, Dhiman M, Whorton EB, Garg NJ (2008) Tissue-specific oxidative imbalance and mitochondrial dysfunction during Trypanosoma cruzi infection in mice. Microbes Infect 10:1201–1209CrossRefGoogle Scholar
  16. 16.
    Wen J-J, Bhatia V, Popov VL, Garg NJ (2006) Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas disease. Am J Pathol 169:1953–1964CrossRefGoogle Scholar
  17. 17.
    Dhiman M, Nakayasu ES, Madaiah YH, Reynolds BK, Wen JJ, Almeida IC, Garg NJ (2008) Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas’ disease. Am J Pathol 173:728–740CrossRefGoogle Scholar
  18. 18.
    Dhiman M, Zago MP, Nunez S, Nunez-Burgio F, Garg NJ (2012) Cardiac oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in Chagas disease pathogenesis. PLoS One 7:e28449CrossRefGoogle Scholar
  19. 19.
    Dhiman M, Coronado YA, Vallejo CK, Petersen JR, Ejilemele A, Nunez S, Zago MP, Spratt HM, Garg NJ (2013) Innate immune responses and antioxidant/oxidant imbalance are major determinants of human chagas disease. PLoS NTD 7:e2364Google Scholar
  20. 20.
    Dhiman M, Wan X-X, PL V, Vargas G, Garg NJ (2013) MnSODtg mice control myocardial inflammatory and oxidative stress and remodeling responses elicited in chronic Chagas disease. J Am Heart Assoc 2:e000302CrossRefGoogle Scholar
  21. 21.
    Wen J-J, Gupta S, Guan Z, Dhiman M, Condon D, Lui CY, Garg NJ (2010) Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic rats. J Am Coll Cardiol 55:2499–2508CrossRefGoogle Scholar
  22. 22.
    Wen JJ, Porter C, Garg NJ (2017) Inhibition of NFE2L2-antioxidant response element pathway by mitochondrial reactive oxygen species contributes to development of cardiomyopathy and left ventricular dysfunction in Chagas disease. Antioxid Redox Signal 27:550–566. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197. CrossRefPubMedGoogle Scholar
  24. 24.
    Paige J, Xu G, Stancevic B, Jaffrey S (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15:1307–1316CrossRefGoogle Scholar
  25. 25.
    Zhang X, Huang B, Zhou X, Chen C (2010) Quantitative proteomic analysis of S-nitrosated proteins in diabetic mouse liver with ICAT switch method. Protein Cell 1:675–687. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Murray CI, Chung HS, Uhrigshardt H, Van Eyk JE (2013) Quantification of mitochondrial S-nitrosylation by CysTMT6 switch assay. In: Vivanco F (ed) Heart proteomics: methods and protocols. Humana Press, Totowa, NJ, pp 169–179CrossRefGoogle Scholar
  27. 27.
    Tyagarajan K, Pretzer E, Wiktorowicz JE (2003) Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24:2348–2358. CrossRefPubMedGoogle Scholar
  28. 28.
    Pretzer E, Wiktorowicz JE (2008) Saturation fluorescence labeling of proteins for proteomic analyses. Anal Biochem 374:250–262. S0003-2697(07)00812-3 [pii]. CrossRefPubMedGoogle Scholar
  29. 29.
    Wiktorowicz JE, Stafford S, Rea H, Urvil P, Soman K, Kurosky A, Perez-Polo JR, Savidge TC (2011) Quantification of cysteinyl s-nitrosylation by fluorescence in unbiased proteomic studies. Biochemistry 50:5601–5614. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Garg NJ, Soman KV, Zago MP, Koo SJ, Spratt H, Stafford S, Blell ZN, Gupta S, Nunez Burgos J, Barrientos N, Brasier AR, Wiktorowicz JE (2016) Changes in proteome profile of peripheral blood mononuclear cells in chronic Chagas disease. PLoS Negl Trop Dis 10:e0004490. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koo SJ, Spratt HM, Soman KV, Stafford S, Gupta S, Petersen JR, Zago MP, Martinez MN, Brasier AR, Wiktorowicz JE, Garg NJ (2016) S-Nitrosylation proteome profile of peripheral blood mononuclear cells in human heart failure. Int J Proteom 2016:1384523. CrossRefGoogle Scholar
  32. 32.
    Wiktorowicz JE, Stafford SJ, Garg NJ (2017) Protein cysteinyl-S-nitrosylation: analysis and quantification. Methods Enzymol 586:1–14. CrossRefPubMedGoogle Scholar
  33. 33.
    Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239CrossRefGoogle Scholar
  34. 34.
    Brasier AR, Victor S, Ju H, Busse WW, Curran-Everett D, Bleecker E, Castro M, Chung KF, Gaston B, Israel E, Wenzel SE, Erzurum SC, Jarjour NN, Calhoun WJ (2010) Predicting intermediate phenotypes in asthma using bronchoalveolar lavage-derived cytokines. Clin Transl Sci 3:147–157. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brasier AR, Garcia J, Wiktorowicz JE, Spratt HM, Comach G, Ju H, Recinos A 3rd, Soman K, Forshey BM, Halsey ES, Blair PJ, Rocha C, Bazan I, Victor SS, Wu Z, Stafford S, Watts D, Morrison AC, Scott TW, Kochel TJ (2012) Discovery proteomics and nonparametric modeling pipeline in the development of a candidate biomarker panel for dengue hemorrhagic fever. Clin Transl Sci 5:8–20. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brasier AR, Zhao Y, Spratt HM, Wiktorowicz JE, Ju H, Wheat LJ, Baden L, Stafford S, Wu Z, Issa N, Caliendo AM, Denning DW, Soman K, Clancy CJ, Nguyen MH, Sugrue MW, Alexander BD, Wingard JR (2015) Improved detection of invasive pulmonary aspergillosis arising during leukemia treatment using a panel of host response proteins and fungal antigens. PLoS One 10:e0143165. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brasier AR, Zhao Y, Wiktorowicz JE, Spratt HM, Nascimento EJM, Cordeiro MT, Soman KV, Ju H, Recinos A, Stafford S, Wu Z, Marques ETA, Vasilakis N (2015) Molecular classification of outcomes from dengue virus-3 infections. J Clin Virol 64:97–106. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Friedman JH, Roosen CB (1995) An introduction to multivariate adaptive regression splines. Stat Methods Med Res 4:197–217CrossRefGoogle Scholar
  39. 39.
    Gupta S, Wan X, Zago MP, Sellers VC, Silva TS, Assiah D, Dhiman M, Nuñez S, Petersen JR, Vázquez-Chagoyán JC, Estrada-Franco JG, Garg NJ (2013). Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLoS Negl Trop Dis.;7(1):e2018. Epub 2013 Jan 17
  40. 40.
    Chowdhury I, Koo S, Yi L, Gupta S, Bahar B, Silla L, Nunez Burgos J, Barrientos N, Zago MP, Garg NJ (2017) Gene expression profiling and functional characterization of macrophages in response to circulatory microparticles produced during Trypanosoma cruzi infection and Chagas disease. J Innate Immun 9:203–216CrossRefGoogle Scholar
  41. 41.
    Wen JJ, Garg NJ (2012) Proteome expression and carbonylation changes during Trypanosoma cruzi infection and Chagas disease in rats. Mol Cell Proteom 11:M111.010918. Epub 2011CrossRefGoogle Scholar
  42. 42.
    Wen JJ, Zago MP, Nunez S, Gupta S, Nunez Burgos F, Garg NJ (2012) Serum proteomic signature of human chagasic patients for the identification of novel protein biomarkers of disease. Mol Cell Proteom 11:435–452. CrossRefGoogle Scholar
  43. 43.
    Awoonor-Williams E, Rowley CN (2016) Evaluation of methods for the calculation of the pKa of cysteine residues in proteins. J Chem Theory Comput 12:4662–4673. CrossRefPubMedGoogle Scholar
  44. 44.
    Chen G, Liu H, Wang X, Li Z (2010) In vitro methylation by methanol: proteomic screening and prevalence investigation. Anal Chim Acta 661:67–75. CrossRefPubMedGoogle Scholar
  45. 45.
    Stemmler EA, Barton EE, Esonu OK, Polasky DA, Onderko LL, Bergeron AB, Christie AE, Dickinson PS (2013) C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol. Peptides 46:108–125. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • John E. Wiktorowicz
    • 1
    • 4
  • M. Paola Zago
    • 2
  • Nisha J. Garg
    • 3
    • 4
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical Branch (UTMB)GalvestonUSA
  2. 2.Instituto de Patología Experimental, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)SaltaArgentina
  3. 3.Department of Microbiology and ImmunologyUTMBGalvestonUSA
  4. 4.Institute for Human Infections and Immunity, UTMBGalvestonUSA

Personalised recommendations