Advertisement

CD8+ T Cell Response to Trypanosoma cruzi Antigens during Chronic Chagas Disease

  • Paola LassoEmail author
  • Jose Mateus
  • John Mario González
  • Adriana Cuéllar
  • Concepción Puerta
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

Flow cytometry is a valuable technique in cellular immunology that allows evaluating effective parameters of the immune response associated with CD8+ T cells. During Chagas disease, infection caused by Trypanosoma cruzi parasite, similar to other intracellular infectious agents, antigen-specific CD8+ T cells are essential for controlling the infection. However, CD8+ T cell response is only partially effective in some chronic Chagas disease patients. Thus, characterization and phenotyping of T. cruzi-specific CD8+ T cells are of great importance during chronic Chagas disease.

Key words

Chagas disease CD8+ T cells Polyfunctionality Inhibitory receptors Phenotype Cytometry 

Notes

Acknowledgments

We thank the patients and healthy volunteers who participated in the study. We thank the following for financial support: COLCIENCIAS (Code 120349326159) and Pontificia Universidad Javeriana (No. 00006233).

References

  1. 1.
    Gonzalez JM, Cuellar A, Puerta CJ (2017) La respuesta inmunitaria adaptativa en la infección crónica por Trypanosoma cruzi. Rev Acad Colomb Cienc Ex Fis Nat 41(161):456–465CrossRefGoogle Scholar
  2. 2.
    Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M (2003) Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc Res 60(1):96–107CrossRefGoogle Scholar
  3. 3.
    Reis DD, Jones EM, Tostes S Jr, Lopes ER, Gazzinelli G, Colley DG, McCurley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48(5):637–644CrossRefGoogle Scholar
  4. 4.
    Sato MN, Yamashiro-Kanashiro EH, Tanji MM, Kaneno R, Higuchi ML, Duarte AJ (1992) CD8+ cells and natural cytotoxic activity among spleen, blood, and heart lymphocytes during the acute phase of Trypanosoma cruzi infection in rats. Infect Immun 60(3):1024–1030PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tarleton RL, Koller BH, Latour A, Postan M (1992) Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 356(6367):338–340.  https://doi.org/10.1038/356338a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Tarleton RL, Sun J, Zhang L, Postan M (1994) Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas’ disease. Infect Immun 62(5):1820–1829PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tarleton RL (1990) Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol 144(2):717–724PubMedGoogle Scholar
  8. 8.
    Martin D, Tarleton R (2004) Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunol Rev 201:304–317.  https://doi.org/10.1111/j.0105-2896.2004.00183.x CrossRefPubMedGoogle Scholar
  9. 9.
    Vargas-Zambrano JC, Lasso P, Cuellar A, Puerta CJ, Gonzalez JM (2013) A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 108(2):212–219CrossRefGoogle Scholar
  10. 10.
    Muller U, Sobek V, Balkow S, Holscher C, Mullbacher A, Museteanu C, Mossmann H, Simon MM (2003) Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur J Immunol 33(1):70–78.  https://doi.org/10.1002/immu.200390009 CrossRefPubMedGoogle Scholar
  11. 11.
    Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E (2013) The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 43(11):2797–2809.  https://doi.org/10.1002/eji.201343751 CrossRefPubMedGoogle Scholar
  12. 12.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297.  https://doi.org/10.1038/nm.2446 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Morrot A (2016) Lifelong protection mediated by stem cell-like CD8+ T memory subset cells (Tscm) induced by vaccination. Ann Transl Med 4(11):221.  https://doi.org/10.21037/atm.2016.05.38 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, Price DA, Waldmann TA, Restifo NP, Franchini G, Roederer M (2013) Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123(2):594–599.  https://doi.org/10.1172/JCI66327 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ribeiro SP, Milush JM, Cunha-Neto E, Kallas EG, Kalil J, Somsouk M, Hunt PW, Deeks SG, Nixon DF, SenGupta D (2014) The CD8+ memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection. J Virol 88(23):13836–13844.  https://doi.org/10.1128/JVI.01948-14 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gattinoni L, Speiser DE, Lichterfeld M, Bonini C (2017) T memory stem cells in health and disease. Nat Med 23(1):18–27.  https://doi.org/10.1038/nm.4241 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499CrossRefGoogle Scholar
  18. 18.
    Giraldo NA, Bolanos NI, Cuellar A, Roa N, Cucunuba Z, Rosas F, Velasco V, Puerta CJ, Gonzalez JM (2013) T lymphocytes from chagasic patients are activated but lack proliferative capacity and down-regulate CD28 and CD3zeta. PLoS Negl Trop Dis 7(1):e2038.  https://doi.org/10.1371/journal.pntd.0002038 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655.  https://doi.org/10.1038/nri1416 CrossRefPubMedGoogle Scholar
  20. 20.
    Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258.  https://doi.org/10.1038/nri2274 CrossRefPubMedGoogle Scholar
  21. 21.
    Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73(11):975–983.  https://doi.org/10.1002/cyto.a.20643 CrossRefPubMedGoogle Scholar
  22. 22.
    Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107(12):4781–4789.  https://doi.org/10.1182/blood-2005-12-4818 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Appay V, Douek DC, Price DA (2008) CD8+ T cell efficacy in vaccination and disease. Nat Med 14(6):623–628.  https://doi.org/10.1038/nm.f.1774 CrossRefPubMedGoogle Scholar
  24. 24.
    Lasso P, Mateus J, Pavia P, Rosas F, Roa N, Thomas MC, Lopez MC, Gonzalez JM, Puerta CJ, Cuellar A (2015) Inhibitory receptor expression on CD8+ T cells is linked to functional responses against Trypanosoma cruzi antigens in chronic chagasic patients. J Immunol 195(8):3748–3758.  https://doi.org/10.4049/jimmunol.1500459 CrossRefPubMedGoogle Scholar
  25. 25.
    Mateus J, Lasso P, Pavia P, Rosas F, Roa N, Valencia-Hernandez CA, Gonzalez JM, Puerta CJ, Cuellar A (2015) Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl Trop Dis 9(1):e3432.  https://doi.org/10.1371/journal.pntd.0003432 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lasso P, Beltran L, Guzman F, Rosas F, Thomas MC, Lopez MC, Gonzalez JM, Cuellar A, Puerta CJ (2016) Promiscuous recognition of a Trypanosoma cruzi CD8+ T cell epitope among HLA-A2, HLA-A24 and HLA-A1 supertypes in chagasic patients. PLoS One 11(3):e0150996.  https://doi.org/10.1371/journal.pone.0150996 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fiuza JA, Fujiwara RT, Gomes JA, Rocha MO, Chaves AT, de Araujo FF, Fares RC, Teixeira-Carvalho A, Martins-Filho OA, Cancado GG, Correa-Oliveira R (2009) Profile of central and effector memory T cells in the progression of chronic human Chagas disease. PLoS Negl Trop Dis 3(9):e512.  https://doi.org/10.1371/journal.pntd.0000512 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lasso P, Mesa D, Cuellar A, Guzman F, Bolanos N, Rosas F, Velasco V, Thomas MC, Lopez MC, Gonzalez JM, Puerta CJ (2010) Frequency of specific CD8+ T cells for a promiscuous epitope derived from Trypanosoma cruzi KMP-11 protein in chagasic patients. Parasite Immunol 32(7):494–502.  https://doi.org/10.1111/j.1365-3024.2010.01206.x CrossRefPubMedGoogle Scholar
  29. 29.
    Bengsch B, Seigel B, Ruhl M, Timm J, Kuntz M, Blum HE, Pircher H, Thimme R (2010) Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 6(6):e1000947.  https://doi.org/10.1371/journal.ppat.1000947 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37.  https://doi.org/10.1038/ni.1679 CrossRefPubMedGoogle Scholar
  31. 31.
    Gigley JP, Bhadra R, Moretto MM, Khan IA (2012) T cell exhaustion in protozoan disease. Trends Parasitol 28(9):377–384.  https://doi.org/10.1016/j.pt.2012.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, Crompton PD, Marsh K, Ndungu FM (2013) Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol 190(3):1038–1047.  https://doi.org/10.4049/jimmunol.1202438 CrossRefPubMedGoogle Scholar
  33. 33.
    Nakamoto N, Cho H, Shaked A, Olthoff K, Valiga ME, Kaminski M, Gostick E, Price DA, Freeman GJ, Wherry EJ, Chang KM (2009) Synergistic reversal of intrahepatic HCV-specific CD8+ T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 5(2):e1000313.  https://doi.org/10.1371/journal.ppat.1000313 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Roederer M, Nozzi JL, Nason MC (2011) SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79(2):167–174.  https://doi.org/10.1002/cyto.a.21015 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bull M, Lee D, Stucky J, Chiu YL, Rubin A, Horton H, McElrath MJ (2007) Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods 322(1–2):57–69.  https://doi.org/10.1016/j.jim.2007.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1(3):1507–1516.  https://doi.org/10.1038/nprot.2006.268 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paola Lasso
    • 1
    • 2
    Email author
  • Jose Mateus
    • 1
    • 2
  • John Mario González
    • 3
  • Adriana Cuéllar
    • 1
  • Concepción Puerta
    • 2
  1. 1.Grupo de Inmunobiología y Biología CelularFacultad de Ciencias, Pontificia Universidad JaverianaBogotáColombia
  2. 2.Grupo de Enfermedades InfecciosasFacultad de Ciencias, Pontificia Universidad JaverianaBogotáColombia
  3. 3.Grupo de Ciencias Básicas MédicasFacultad de Medicina, Universidad de los AndesBogotáColombia

Personalised recommendations