Advertisement

Apolipoprotein A1 and Fibronectin Fragments as Markers of Cure for the Chagas Disease

  • Elizabeth Ruiz-Lancheros
  • Makan Golizeh
  • Momar NdaoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

Chagas disease (CD), endemic from Latin America, affects more than 8 million people, and the disease keeps spreading around the world due to population migrations. The treatment options for CD are currently limited to two drugs, benznidazole (BZ) and nifurtimox (Nfx), which are often unsatisfactory in chronically infected patients. To date, the only accepted marker of the cure is seroconversion (the disappearance of Trypanosoma cruzi antibodies in the patient’s serum), which can take decades to occur, if ever. The lack of posttreatment test-of-cure often prevents appropriate patient counseling and limits the development of new drugs. Without a doubt, reliable biomarkers for parasitological cure are urgently needed. Several pieces of evidence suggest that apolipoprotein A1 and fibronectin fragments are produced during the infection as part of the process of T. cruzi cell invasion and can thus be used as its surrogate biomarkers. In this chapter, we present a standardized method to evaluate these fragments in serum using mass spectrometry and immunoblotting in CD patients for diagnosis, prognosis, and treatment assessment purposes.

Key words

Biomarkers Chagas disease Apolipoprotein A1 Fibronectin Mass spectrometry Immunoblotting 

References

  1. 1.
    Stanaway JD, Roth G (2015) The burden of Chagas disease: estimates and challenges. Glob Heart 10(3):139–144CrossRefGoogle Scholar
  2. 2.
    Meymandi SK, Forsyth CJ, Soverow J, Hernandez S, Sanchez D, Montgomery SP, Traina M (2017) Prevalence of Chagas disease in the Latin American–born population of Los Angeles. Clin Infect Dis 64(9):1182–1188CrossRefGoogle Scholar
  3. 3.
    Conners EE, Vinetz JM, Weeks JR, Brouwer KC (2016) A global systematic review of Chagas disease prevalence among migrants. Acta Trop 156:68–78CrossRefGoogle Scholar
  4. 4.
    Muñoz J, Coll O, Juncosa T, Vergés M, del Pino M, Fumado V, Bosch J, Posada EJ, Hernandez S, Fisa R (2009) Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis 48(12):1736–1740CrossRefGoogle Scholar
  5. 5.
    Flores-Chávez M, Fernández B, Puente S, Torres P, Rodríguez M, Monedero C, Cruz I, Gárate T, Canavate C (2008) Transfusional chagas disease: parasitological and serological monitoring of an infected recipient and blood donor. Clin Infect Dis 46(5):e44–e47CrossRefGoogle Scholar
  6. 6.
    Fearon MA, Scalia V, Huang M, Dines I, Ndao M, Lagacé-Wiens P (2013) A case of vertical transmission of Chagas disease contracted via blood transfusion in Canada. Can J Infect Dis Med Microbiol 24(1):32–34CrossRefGoogle Scholar
  7. 7.
    de Lana M, Martins-Filho OA (2015) Revisiting the posttherapeutic cure criterion in Chagas disease: time for new methods, more questions, doubts, and polemics or time to change old concepts? Biomed Res Int 2015:652985CrossRefGoogle Scholar
  8. 8.
    Britto CC (2009) Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations. Mem Inst Oswaldo Cruz 104:122–135CrossRefGoogle Scholar
  9. 9.
    Schmit P-O, Vialaret J, Wessels HJ, van Gool AJ, Lehmann S, Gabelle A, Wood J, Bern M, Paape R, Suckau D (2017) Towards a routine application of top-down approaches for label-free discovery workflows. J Proteome 175:12–26CrossRefGoogle Scholar
  10. 10.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445(4):683–693CrossRefGoogle Scholar
  11. 11.
    Ndao M, Spithill TW, Caffrey R, Li H, Podust VN, Perichon R, Santamaria C, Ache A, Duncan M, Powell MR, Ward BJ (2010) Identification of novel diagnostic serum biomarkers for Chagas’ disease in asymptomatic subjects by mass spectrometric profiling. J Clin Microbiol 48(4):1139–1149CrossRefGoogle Scholar
  12. 12.
    Santamaria C, Chatelain E, Jackson Y, Miao Q, Ward BJ, Chappuis F, Ndao M (2014) Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infect Dis 14:302CrossRefGoogle Scholar
  13. 13.
    Miao Q, Santamaria C, Bailey D, Genest J, Ward BJ, Ndao M (2014) Apolipoprotein A-I truncations in Chagas disease are caused by cruzipain, the major cysteine protease of Trypanosoma cruzi. Am J Pathol 184(4):976–984CrossRefGoogle Scholar
  14. 14.
    Ouaissi M, Afchain D, Capron A, Grimaud J (1984) Fibronectin receptors on Trypanosoma cruzi trypomastigotes and their biological function. Nature 308(5957):380CrossRefGoogle Scholar
  15. 15.
    Miao Q, Ndao M (2014) Trypanosoma cruzi infection and host lipid metabolism. Mediat Inflamm 2014:902038CrossRefGoogle Scholar
  16. 16.
    La Flamme AC, Kahn SJ, Rudensky AY, Van Voorhis WC (1997) Trypanosoma cruzi-infected macrophages are defective in major histocompatibility complex class II antigen presentation. Eur J Immunol 27(12):3085–3094CrossRefGoogle Scholar
  17. 17.
    Wang S-H, Yuan S-G, Peng D-Q, Zhao S-P (2012) HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis 225(1):105–114CrossRefGoogle Scholar
  18. 18.
    Prioli RP, Rosenberg I, Pereira ME (1990) High- and low-density lipoproteins enhance infection of Trypanosoma cruzi in vitro. Mol Biochem Parasitol 38(2):191–198CrossRefGoogle Scholar
  19. 19.
    Combs TP, Nagajyothi MS, de Almeida CJ, Jelicks LA, Schubert W, Lin Y, Jayabalan DS, Zhao D, Braunstein VL, Landskroner-Eiger S, Cordero A, Factor SM, Weiss LM, Lisanti MP, Tanowitz HB, Scherer PE (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280(25):24085–24094CrossRefGoogle Scholar
  20. 20.
    Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM (2017) Adipose tissue: a safe haven for parasites? Trends Parasitol 33(4):276–284CrossRefGoogle Scholar
  21. 21.
    Nagajyothi F, Weiss LM, Silver DL, Desruisseaux MS, Scherer PE, Herz J, Tanowitz HB (2011) Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS Negl Trop Dis 5(2):e953CrossRefGoogle Scholar
  22. 22.
    Johndrow C, Nelson R, Tanowitz H, Weiss LM, Nagajyothi F (2014) Trypanosoma cruzi infection results in an increase in intracellular cholesterol. Microbes Infect 16(4):337–344.  https://doi.org/10.1016/j.micinf.2014.01.001. S1286-4579(14)00003-3 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1(9):683CrossRefGoogle Scholar
  24. 24.
    Ruiz-Lancheros E, Rasoolizadeh A, Chatelain E, Garcia-Bournissen F, Moroni S, Moscatelli G, Altcheh J, Ndao M (2018) Validation of Apolipoprotein A-1 and Fibronectin Fragments as Markers of Parasitological Cure for Congenital Chagas Disease in Children Treated With Benznidazole. Open Forum Infect Dis, vol 11. p ofy23Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elizabeth Ruiz-Lancheros
    • 1
    • 2
  • Makan Golizeh
    • 1
    • 2
  • Momar Ndao
    • 1
    • 2
    Email author
  1. 1.National Reference Centre for Parasitology, Research Institute of the McGill University Health CentreMontrealCanada
  2. 2.Program in Infectious Diseases and Immunity in Global HealthResearch Institute of the McGill University Health CentreMontrealCanada

Personalised recommendations