Advertisement

Assessing Parasite Load in Chagas Disease Patients by Quantitative Multiplex Real-Time PCR

  • Juan Carlos RamírezEmail author
  • Otacilio da Cruz Moreira
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

The development of accurate diagnostic tools and surrogate markers of parasitological response to treatment are priorities in Chagas disease (CD) research. For years, the detection of Trypanosoma cruzi DNA by PCR has proved to be useful in some clinical scenarios like acute CD, including cases of congenital transmission, CD reactivation in immunosuppressed patients, and posttreatment follow-up. In that sense, the implementation of quantitative real-time PCR (qPCR) assays was an important step in the development of more reliable tools for CD molecular diagnostics and treatment follow-up. In the last decade, two multicenter PCR studies allowed the harmonization and validation of standard operating procedures for PCR-based detection and quantification of T. cruzi DNA in blood samples. Herein we describe the two most used protocols to quantify parasitic load in human blood samples by multiplex qPCR assays and discuss some aspects to consider during planning and executing these procedures.

Key words

Trypanosoma cruzi Chagas disease Molecular diagnostics Treatment monitoring Parasite load Real-time PCR 

References

  1. 1.
    TDR/WHO (2012) Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Porras AI, Yadon ZE, Altcheh J et al (2015) Target product profile (TPP) for Chagas disease point-of-care diagnosis and assessment of response to treatment. PLoS Negl Trop Dis 9:e0003697.  https://doi.org/10.1371/journal.pntd.0003697 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    WHO Expert Committee (2002) Control of Chagas disease. World Health Organ Tech Rep Ser 905:i–vi, 1–109Google Scholar
  4. 4.
    Antas PR, Medrano-Mercado N, Torrico F et al (1999) Early, intermediate, and late acute stages in Chagas’ disease: a study combining anti-galactose IgG, specific serodiagnosis, and polymerase chain reaction analysis. Am J Trop Med Hyg 61:308–314CrossRefGoogle Scholar
  5. 5.
    de NBA, Diaz-Bello Z, Colmenares C et al (2012) The performance of laboratory tests in the management of a large outbreak of orally transmitted Chagas disease. Mem Inst Oswaldo Cruz 107:893–898CrossRefGoogle Scholar
  6. 6.
    Virreira M, Torrico F, Truyens C et al (2003) Comparison of polymerase chain reaction methods for reliable and easy detection of congenital Trypanosoma cruzi infection. Am J Trop Med Hyg 68:574–582CrossRefGoogle Scholar
  7. 7.
    Velazquez EB, Rivero R, De Rissio AM et al (2014) Predictive role of polymerase chain reaction in the early diagnosis of congenital Trypanosoma cruzi infection. Acta Trop 137:195–200.  https://doi.org/10.1016/j.actatropica.2014.05.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Diez M, Favaloro L, Bertolotti A et al (2007) Usefulness of PCR strategies for early diagnosis of Chagas’ disease reactivation and treatment follow-up in heart transplantation. Am J Transplant 7:1633–1640.  https://doi.org/10.1111/j.1600-6143.2007.01820.x CrossRefPubMedGoogle Scholar
  9. 9.
    Britto C, Cardoso MA, Vanni CM et al (1995) Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evaluation. Parasitology 110(Pt 3):241–247CrossRefGoogle Scholar
  10. 10.
    Piron M, Fisa R, Casamitjana N et al (2007) Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop 103:195–200.  https://doi.org/10.1016/j.actatropica.2007.05.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Duffy T, Bisio M, Altcheh J et al (2009) Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients. PLoS Negl Trop Dis 3:e419.  https://doi.org/10.1371/journal.pntd.0000419 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Qvarnstrom Y, Schijman AG, Veron V et al (2012) Sensitive and specific detection of Trypanosoma cruzi DNA in clinical specimens using a multi-target real-time PCR approach. PLoS Negl Trop Dis 6:e1689.  https://doi.org/10.1371/journal.pntd.0001689 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schijman AGA, Bisio M, Orellana L et al (2011) International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis 5:e931.  https://doi.org/10.1371/journal.pntd.0000931 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duffy T, Cura CI, Ramirez JC et al (2013) Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis 7:e2000.  https://doi.org/10.1371/journal.pntd.0002000 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ramírez JC, Cura CII, Moreira C et al (2015) Analytical validation of quantitative real-time PCR methods for quantification of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. J Mol Diagn 17:605–615.  https://doi.org/10.1016/j.jmoldx.2015.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Moreira OC, Ramirez JD, Velazquez E et al (2013) Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: a substudy from the BENEFIT trial. Acta Trop 125:23–31.  https://doi.org/10.1016/j.actatropica.2012.08.020 CrossRefPubMedGoogle Scholar
  17. 17.
    Molina I, Gomez i Prat J, Salvador F et al (2014) Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med 370:1899–1908.  https://doi.org/10.1056/NEJMoa1313122 CrossRefPubMedGoogle Scholar
  18. 18.
    Wei B, Chen L, Kibukawa M et al (2016) Development of a PCR assay to detect low level Trypanosoma cruzi in blood specimens collected with PAXgene blood DNA tubes for clinical trials treating chagas disease. PLoS Negl Trop Dis 10:e0005146.  https://doi.org/10.1371/journal.pntd.0005146 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Torrico F, Gascon J, Ortiz L et al (2018) Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis 18:419–430.  https://doi.org/10.1016/S1473-3099(17)30538-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Cura CI, Ramirez JC, Rodriguez M et al (2017) Comparative study and analytical verification of PCR methods for the diagnosis of congenital Chagas disease. J Mol Diagn 19:673–681.  https://doi.org/10.1016/j.jmoldx.2017.05.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Guhl F, Jaramillo C, Carranza JC, Vallejo GA (2002) Molecular characterization and diagnosis of Trypanosoma cruzi and T. rangeli. Arch Med Res 33:362–370CrossRefGoogle Scholar
  22. 22.
    Ferreira KAM, Fajardo EF, Baptista RP et al (2014) Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli. Parasitol Res 113:2199–2207.  https://doi.org/10.1007/s00436-014-3872-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Burns MJ, Nixon GJ, Foy CA, Harris N (2005) Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31.  https://doi.org/10.1186/1472-6750-5-31 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Demeke T, Jenkins GR (2010) Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396:1977–1990.  https://doi.org/10.1007/s00216-009-3150-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Burd EM (2010) Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23:550–576.  https://doi.org/10.1128/CMR.00074-09 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juan Carlos Ramírez
    • 1
    Email author
  • Otacilio da Cruz Moreira
    • 2
  1. 1.Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), CONICETBuenos AiresArgentina
  2. 2.Laboratório de Biología Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/FiocruzRio de JaneiroBrazil

Personalised recommendations