Metabolic Labeling of Surface Neo-sialylglyconjugates Catalyzed by Trypanosoma cruzi trans-Sialidase

  • Giannina Carlevaro
  • Andrés B. Lantos
  • Gaspar E. Cánepa
  • María de los Milagros Cámara
  • Martín Somoza
  • Carlos A. Buscaglia
  • Oscar Campetella
  • Juan MucciEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)


Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.

Key words

Trypanosoma cruzi Sialic acid trans-Sialidase Sialylglycoconjugates Mucins 



GC and MS hold fellowships from CONICET, and MdlMC, CAB, OC and JM are career investigators from the same Institution. This work was supported by the National Institute of Health R01AI104531 to OC, and Agencia Nacional de Promoción Científica y Tecnológica PICT2012-1815 to JM. The funders had no role in decision to publish or preparation of the manuscript.


  1. 1.
    Previato JO, Andrade AF, Pessolani MC, Mendonca-Previato L (1985) Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Mol Biochem Parasitol 16(1):85–96CrossRefGoogle Scholar
  2. 2.
    Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10(4):757–768CrossRefGoogle Scholar
  3. 3.
    Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG (2003) Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 125(25):7532–7533. CrossRefPubMedGoogle Scholar
  4. 4.
    Giorgi ME, de Lederkremer RM (2011) Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 346(12):1389–1393. CrossRefPubMedGoogle Scholar
  5. 5.
    Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonca-Previato L, Previato JO (2015) The trans-sialidase, the major Trypanosoma cruzi virulence factor: three decades of studies. Glycobiology 25(11):1142–1149. CrossRefPubMedGoogle Scholar
  6. 6.
    Agusti R, Giorgi ME, Mendoza VM, Kashiwagi GA, de Lederkremer RM, Gallo-Rodriguez C (2015) Synthesis of the O-linked hexasaccharide containing beta-D-Galp-(1→2)-D-Galf in Trypanosoma cruzi mucins. Differences on sialylation by trans-sialidase of the two constituent hexasaccharides. Bioorg Med Chem 23(6):1213–1222. CrossRefPubMedGoogle Scholar
  7. 7.
    Damager I, Buchini S, Amaya MF, Buschiazzo A, Alzari P, Frasch AC, Watts A, Withers SG (2008) Kinetic and mechanistic analysis of Trypanosoma cruzi trans-sialidase reveals a classical ping-pong mechanism with acid/base catalysis. Biochemistry 47(11):3507–3512. CrossRefPubMedGoogle Scholar
  8. 8.
    Pereira-Chioccola VL, Acosta-Serrano A, Correia de Almeida I, Ferguson MA, Souto-Padron T, Rodrigues MM, Travassos LR, Schenkman S (2000) Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J Cell Sci 113(Pt 7):1299–1307PubMedGoogle Scholar
  9. 9.
    Schenkman S, Jiang MS, Hart GW, Nussenzweig V (1991) A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65(7):1117–1125CrossRefGoogle Scholar
  10. 10.
    Bermejo DA, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Amezcua-Vesely MC, Sather BD, Singh AK, Khim S, Mucci J, Liggitt D, Campetella O, Oukka M, Gruppi A, Rawlings DJ (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgammat and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14(5):514–522. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dias WB, Fajardo FD, Graca-Souza AV, Freire-de-Lima L, Vieira F, Girard MF, Bouteille B, Previato JO, Mendonca-Previato L, Todeschini AR (2008) Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi. Cell Microbiol 10(1):88–99. CrossRefPubMedGoogle Scholar
  12. 12.
    Montes CL, Acosta-Rodriguez EV, Mucci J, Zuniga EI, Campetella O, Gruppi A (2006) A Trypanosoma cruzi antigen signals CD11b+ cells to secrete cytokines that promote polyclonal B cell proliferation and differentiation into antibody-secreting cells. Eur J Immunol 36(6):1474–1485CrossRefGoogle Scholar
  13. 13.
    Mucci J, Risso MG, Leguizamon MS, Frasch AC, Campetella O (2006) The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation. Cell Microbiol 8(7):1086–1095CrossRefGoogle Scholar
  14. 14.
    Mucci J, Hidalgo A, Mocetti E, Argibay PF, Leguizamon MS, Campetella O (2002) Thymocyte depletion in Trypanosoma cruzi infection is mediated by trans-sialidase-induced apoptosis on nurse cells complex. Proc Natl Acad Sci U S A 99(6):3896–3901CrossRefGoogle Scholar
  15. 15.
    Risso MG, Pitcovsky TA, Caccuri RL, Campetella O, Leguizamon MS (2007) Immune system pathogenesis is prevented by the neutralization of the systemic trans-sialidase from Trypanosoma cruzi during severe infections. Parasitology 134(Pt 4):503–510CrossRefGoogle Scholar
  16. 16.
    Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM, DosReis GA, Mendonca-Previato L, Previato JO, Todeschini AR (2010) Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses. J Biol Chem 285(18):13388–13396. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Freire-de-Lima L, Gentile LB, da Fonseca LM, da Costa KM, Santos Lemos J, Jacques LR, Morrot A, Freire-de-Lima CG, Nunes MP, Takiya CM, Previato JO, Mendonca-Previato L (2017) Role of inactive and active Trypanosoma cruzi trans-sialidases on T cell homing and secretion of inflammatory cytokines. Front Microbiol 8:1307. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nardy AF, Luiz da Silva Filho J, Perez AR, de Meis J, Farias-de-Oliveira DA, Penha L, de Araujo Oliveira I, Dias WB, Todeschini AR, Freire-de-Lima CG, Bellio M, Caruso-Neves C, Pinheiro AA, Takiya CM, Bottasso O, Savino W, Morrot A (2013) Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes. Microbes Infect 15(5):365–374. CrossRefPubMedGoogle Scholar
  19. 19.
    Todeschini AR, Girard MF, Wieruszeski JM, Nunes MP, DosReis GA, Mendonca-Previato L, Previato JO (2002) trans-Sialidase from Trypanosoma cruzi binds host T-lymphocytes in a lectin manner. J Biol Chem 277(48):45962–45968CrossRefGoogle Scholar
  20. 20.
    Todeschini AR, Nunes MP, Pires RS, Lopes MF, Previato JO, Mendonca-Previato L, DosReis GA (2002) Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. J Immunol 168(10):5192–5198CrossRefGoogle Scholar
  21. 21.
    Leguizamon MS, Mocetti E, Garcia Rivello H, Argibay P, Campetella O (1999) Trans-sialidase from Trypanosoma cruzi induces apoptosis in cells from the immune system in vivo. J Infect Dis 180(4):1398–1402. CrossRefPubMedGoogle Scholar
  22. 22.
    Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O (2005) The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun 73(1):201–207CrossRefGoogle Scholar
  23. 23.
    Nardy AF, Freire-de-Lima CG, Perez AR, Morrot A (2016) Role of Trypanosoma cruzi Trans-sialidase on the escape from host immune surveillance. Front Microbiol 7:348. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, Previato JO, Mendonca-Previato L (2016) Modulation of cell sialoglycophenotype: a stylish mechanism adopted by Trypanosoma cruzi to ensure its persistence in the infected host. Front Microbiol 7:698. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mucci J, Lantos AB, Buscaglia CA, Leguizamon MS, Campetella O (2017) The Trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends Parasitol 33(2):102–112. CrossRefPubMedGoogle Scholar
  26. 26.
    Buscaglia CA, Kissinger JC, Aguero F (2015) Neglected tropical diseases in the post-genomic era. Trends Genet 31(10):539–555. CrossRefPubMedGoogle Scholar
  27. 27.
    Mendonca-Previato L, Penha L, Garcez TC, Jones C, Previato JO (2013) Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J 30(7):659–666. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, Schenkman S (2001) The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol Biochem Parasitol 114(2):143–150CrossRefGoogle Scholar
  29. 29.
    Buscaglia CA, Campo VA, Frasch AC, Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4(3):229–236CrossRefGoogle Scholar
  30. 30.
    Bartholomeu DC, Cerqueira GC, Leao AC, daRocha WD, Pais FS, Macedo C, Djikeng A, Teixeira SM, El-Sayed NM (2009) Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res 37(10):3407–3417CrossRefGoogle Scholar
  31. 31.
    Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, Aguero F, Buscaglia CA (2011) Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J 438(2):303–313CrossRefGoogle Scholar
  32. 32.
    Alves MJ, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G (2017) Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteome 151:182–192. CrossRefGoogle Scholar
  33. 33.
    Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR (2006) Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol 415:230–250CrossRefGoogle Scholar
  34. 34.
    Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR (2015) Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods 12(6):561–567. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Muia RP, Yu H, Prescher JA, Hellman U, Chen X, Bertozzi CR, Campetella O (2010) Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology 20(7):833–842. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Camara MLM, Canepa GE, Lantos AB, Balouz V, Yu H, Chen X, Campetella O, Mucci J, Buscaglia CA (2017) The trypomastigote small surface antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation. PLoS Negl Trop Dis 11(8):e0005856. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Canepa GE, Degese MS, Budu A, Garcia CR, Buscaglia CA (2012) Involvement of TSSA (trypomastigote small surface antigen) in Trypanosoma cruzi invasion of mammalian cells. Biochem J 444(2):211–218. CrossRefPubMedGoogle Scholar
  38. 38.
    Canepa GE, Mesias AC, Yu H, Chen X, Buscaglia CA (2012) Structural features affecting trafficking, processing, and secretion of Trypanosoma cruzi mucins. J Biol Chem 287(31):26365–26376. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lantos AB, Carlevaro G, Araoz B, Ruiz Diaz P, Camara Mde L, Buscaglia CA, Bossi M, Yu H, Chen X, Bertozzi CR, Mucci J, Campetella O (2016) Sialic acid glycobiology unveils Trypanosoma cruzi trypomastigote membrane physiology. PLoS Pathog 12(4):e1005559. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Campo VA, Buscaglia CA, Di Noia JM, Frasch AC (2006) Immunocharacterization of the mucin-type proteins from the intracellular stage of Trypanosoma cruzi. Microbes Infect 8(2):401–409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Giannina Carlevaro
    • 1
    • 2
  • Andrés B. Lantos
    • 1
    • 2
    • 3
  • Gaspar E. Cánepa
    • 1
    • 2
    • 4
  • María de los Milagros Cámara
    • 1
    • 2
    • 5
  • Martín Somoza
    • 1
    • 2
  • Carlos A. Buscaglia
    • 1
    • 2
  • Oscar Campetella
    • 1
    • 2
  • Juan Mucci
    • 1
    • 2
    Email author
  1. 1.Instituto de Investigaciones BiotecnológicasUniversidad Nacional de San MartínSan MartínArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Laboratorio Dr. LantosBuenos AiresArgentina
  4. 4.Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUSA
  5. 5.Instituto de TecnologíaUniversidad Argentina de la Empresa (UADE)Buenos AiresArgentina

Personalised recommendations