Advertisement

Molecular Dynamic Simulations to Probe Water Permeation Pathways of GPCRs

  • Katsufumi Tomobe
  • Eiji Yamamoto
  • Kenji YasuokaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)

Abstract

Rhodopsin is a light-driven G protein-coupled receptor mediating signal transduction in eyes. The molecular dynamics (MD) simulations are powerful computational tools to investigate molecular behavior of proteins and internal water molecules which are related to the function of proteins; however, the MD simulations of the rhodopsin require several technical setups for accurate calculations. This chapter discusses practical methods for setting up the MD simulations of the rhodopsin [preparation of initial systems, condition files for MD simulation package GROMACS, and data analysis]. The data analysis includes the root mean square deviation (RMSD) and mapping of accessibility of water molecules.

Key words

Rhodopsin G Protein-coupled receptor Water pathway Biological membrane Molecular dynamics simulations 

Notes

Acknowledgments

This work is supported in part by MEXT (Ministry of Education, Culture, Sports, Science and Technology) Grant-in-Aid for the Program for Leading Graduate Schools, Keio University Doctorate Student Grant-in-Aid Program, and a Bilateral Program JSPS. E.Y. was supported by MEXT Grant-in-Aid for the “Building of Consortia for the Development of Human Resources in Science and Technology”.

References

  1. 1.
    Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767CrossRefGoogle Scholar
  2. 2.
    Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310:1006–1009CrossRefGoogle Scholar
  3. 3.
    Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc Natl Acad Sci U S A 104:7764–7769CrossRefGoogle Scholar
  4. 4.
    Röhrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U (2004) A molecular spring for vision. J Am Chem Soc 126:15328–15329CrossRefGoogle Scholar
  5. 5.
    Smith SO (2010) Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys 39:309–328CrossRefGoogle Scholar
  6. 6.
    Yamamoto E, Akimoto T, Hirano Y, Yasui M, Yasuoka K (2014) 1/f fluctuations of amino acids regulate water transportation in aquaporin 1. Phys Rev E 89:022718CrossRefGoogle Scholar
  7. 7.
    Tomobe K, Yamamoto E, Akimoto T, Yasui M, Yasuoka K (2016) Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R. AIP Adv 6:055324CrossRefGoogle Scholar
  8. 8.
    Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520CrossRefGoogle Scholar
  9. 9.
    Sun X, Ågren H, Tu Y (2014) Functional water molecules in rhodopsin activation. J Phys Chem B 118:10863–10873CrossRefGoogle Scholar
  10. 10.
    Tomobe K, Yamamoto E, Kholmurodov K, Yasuoka K (2017) Water permeation through the internal water pathway in activated GPCR rhodopsin. PLoS One 12:e0176876CrossRefGoogle Scholar
  11. 11.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25CrossRefGoogle Scholar
  12. 12.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958PubMedPubMedCentralGoogle Scholar
  13. 13.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  14. 14.
    Jämbeck JP, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948CrossRefGoogle Scholar
  15. 15.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Katsufumi Tomobe
    • 1
  • Eiji Yamamoto
    • 2
  • Kenji Yasuoka
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringKeio UniversityYokohamaJapan
  2. 2.Department of System Design EngineeringKeio UniversityYokohamaJapan

Personalised recommendations