Advertisement

Analysis of Spatial Assembly of GPCRs Using Photoactivatable Dyes and Localization Microscopy

  • Kim C. JonasEmail author
  • Aylin C. Hanyaloglu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)

Abstract

Super-resolution imaging has provided unprecedented insight in the molecular complexities of fundamental cell biological questions. For G protein-coupled receptors (GPCRs), its application to the study of receptor homomers and heteromers have unveiled the diversity of complexes these GPCRs can form at the plasma membrane at a structural and functional level. Here, we describe our methodological approach of photoactivated localization microscopy with photoactivatable dyes (PD-PALM) to visualize and quantify the spatial assembly of GPCR heteromers at the plasma membrane.

Key words

G protein-coupled receptor Dimer Oligomer Heteromer Homomer PD-PALM Super-resolution microscopy 

References

  1. 1.
    Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546(7656):118–123CrossRefGoogle Scholar
  2. 2.
    Baidya M, Dwivedi H, Shukla AK (2017) Frozen in action: cryo-EM structure of a GPCR-G-protein complex. Nat Struct Mol Biol 24(6):500–502CrossRefGoogle Scholar
  3. 3.
    Mayer JP, Tschöp MH, DiMarchi RD (2017) Once blind, now we see GLP-1 molecular action. Cell Metab 26(2):289–291CrossRefGoogle Scholar
  4. 4.
    Martínez-Muñoz L, Rodríguez-Frade JM, Barroso R, Sorzano CS, Torreño-Pina JA, Santiago CA, Manzo C, Lucas P, García-Cuesta EM, Gutierrez E, Barrio L, Vargas J, Cascio G, Carrasco YR, Sánchez-Madrid F, García-Parajo MF, Mellado M (2018) Separating actin-dependent chemokine receptor nanoclustering from dimerization indicates a role for clustering in CXCR4 signaling and function. Mol Cell 70(1):106–119. e110CrossRefGoogle Scholar
  5. 5.
    Briddon SJ, Kilpatrick LE, Hill SJ (2018) Studying GPCR pharmacology in membrane microdomains: fluorescence correlation spectroscopy comes of age. Trends Pharmacol Sci 39(2):158–174CrossRefGoogle Scholar
  6. 6.
    Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R (2016) Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J 283(7):1197–1217CrossRefGoogle Scholar
  7. 7.
    Pfleger KD, Eidne KA (2005) Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385(Pt 3):625–637CrossRefGoogle Scholar
  8. 8.
    Milligan G, Ramsay D, Pascal G, Carrillo JJ (2003) GPCR dimerisation. Life Sci 74(2-3):181–188CrossRefGoogle Scholar
  9. 9.
    Bouvier M, Heveker N, Jockers R, Marullo S, Milligan G (2007) BRET analysis of GPCR oligomerization: newer does not mean better. Nat Methods 4(1):3–4. author reply 4CrossRefGoogle Scholar
  10. 10.
    Bouvier M, Hébert TE (2014) CrossTalk proposal: weighing the evidence for class A GPCR dimers, the evidence favours dimers. J Physiol 592(12):2439–2441CrossRefGoogle Scholar
  11. 11.
    Bouvier M, Hébert TE (2014) Rebuttal from Michel Bouvier and Terence E. Hébert. J Physiol 592(12):2447CrossRefGoogle Scholar
  12. 12.
    Lambert NA, Javitch JA (2014) CrossTalk opposing view: weighing the evidence for class a GPCR dimers, the jury is still out. J Physiol 592(12):2443–2445CrossRefGoogle Scholar
  13. 13.
    Lambert NA, Javitch JA (2014) Rebuttal from Nevin A. Lambert and Jonathan A Javitch. J Physiol 592(12):2449CrossRefGoogle Scholar
  14. 14.
    Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44(27):9395–9403CrossRefGoogle Scholar
  15. 15.
    James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3(12):1001–1006CrossRefGoogle Scholar
  16. 16.
    Fotiadis D, Jastrzebska B, Philippsen A, Müller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16(2):252–259CrossRefGoogle Scholar
  17. 17.
    Salahpour A, Masri B (2007) Experimental challenge to a ‘rigorous’ BRET analysis of GPCR oligomerization. Nat Methods 4(8):599–600. author reply 601CrossRefGoogle Scholar
  18. 18.
    Kenakin T, Agnati LF, Caron M, Fredholm B, Guidoli D, Kobilka B, Lefkowitz RW, Lohse M, Woods A, Fuxe K (2010) International workshop at the Nobel forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached? J Recept Signal Transduct Res 30(5):284–286CrossRefGoogle Scholar
  19. 19.
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6(8):587–594CrossRefGoogle Scholar
  20. 20.
    Rivero-Müller A, Chou YY, Ji I, Lajic S, Hanyaloglu AC, Jonas K, Rahman N, Ji TH, Huhtaniemi I (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 107(5):2319–2324CrossRefGoogle Scholar
  21. 21.
    Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A, de La Torre R, Gasperini P, Navarro G, Howell LA, Pardo L, Lluís C, Canela EI, McCormick PJ, Maldonado R, Robledo P (2015) Cognitive impairment induced by Delta9-tetrahydrocannabinol occurs through Heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194CrossRefGoogle Scholar
  22. 22.
    Jonas KC, Huhtaniemi I, Hanyaloglu AC (2016) Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. Methods Cell Biol 132:55–72CrossRefGoogle Scholar
  23. 23.
    Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I, Hanyaloglu AC (2018) Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep 8(1):2239CrossRefGoogle Scholar
  24. 24.
    Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC (2015) Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem 290(7):3875–3892CrossRefGoogle Scholar
  25. 25.
    Martínez-Muñoz L, Barroso R, Dyrhaug SY, Navarro G, Lucas P, Soriano SF, Vega B, Costas C, Muñoz-Fernández M, Santiago C, Rodríguez Frade JM, Franco R, Mellado M (2014) CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci U S A 111(19):E1960–E1969CrossRefGoogle Scholar
  26. 26.
    Jin J, Momboisse F, Boncompain G, Koensgen F, Zhou Z, Cordeiro N, Arenzana-Seisdedos F, Perez F, Lagane B, Kellenberger E, Brelot A (2018) CCR5 adopts three homodimeric conformations that control cell surface delivery. Sci Signal 11(529)CrossRefGoogle Scholar
  27. 27.
    Dijkman PM, Castell OK, Goddard AD, Munoz-Garcia JC, de Graaf C, Wallace MI, Watts A (2018) Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nat Commun 9(1):1710CrossRefGoogle Scholar
  28. 28.
    Jean-Alphonse F, Bowersox S, Chen S, Beard G, Puthenveedu MA, Hanyaloglu AC (2014) Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. J Biol Chem 289(7):3960–3977CrossRefGoogle Scholar
  29. 29.
    Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340CrossRefGoogle Scholar
  30. 30.
    Tanaka KA, Suzuki KG, Shirai YM, Shibutani ST, Miyahara MS, Tsuboi H, Yahara M, Yoshimura A, Mayor S, Fujiwara TK, Kusumi A (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7(11):865–866CrossRefGoogle Scholar
  31. 31.
    Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528CrossRefGoogle Scholar
  32. 32.
    Rossy J, Cohen E, Gaus K, Owen DM (2014) Method for co-cluster analysis in multichannel single-molecule localisation data. Histochem Cell Biol 141(6):605–612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular and Clinical Sciences Research InstituteSt George’s University of LondonLondonUK
  2. 2.Institute of Medical and Biomedical EducationSt George’s University of LondonLondonUK
  3. 3.Institute of Reproductive and Developmental BiologyImperial College LondonLondonUK

Personalised recommendations