Advertisement

Imaging of Somatic Ca2+ Transients in Differentiated Human Neurons

  • Irena Vertkin
  • Dalit Ben-Yosef
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1942)

Abstract

Calcium is a major regulator of neuronal activity and calcium signaling is critically important for normal neuronal function. Ca imaging is a well-established tool for studying neuronal function and ongoing spontaneous Ca2+ transients are a good indicator of neuronal maturity. There are various indicators available today, differing by their sensitivity, spectra, and loading method. Here we present a method for measurement of Ca2+ transients in neurons using two different Ca2+ indicators, Oregon Green BAPTA-1 and GCaMP6.

Key words

Human induced pluripotent stem cells Somatic Ca2+ transients Calcium indicators Oregon Green-488 BAPTA-1AM GCaMP6 

References

  1. 1.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. https://doi.org/10.1038/35036035CrossRefPubMedGoogle Scholar
  2. 2.
    Brini M, Cali T, Ottolini D, Carafoli E (2013) Intracellular calcium homeostasis and signaling. Met Ions Life Sci 12:119–168. https://doi.org/10.1007/978-94-007-5561-1_5CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529. https://doi.org/10.1038/nrm1155CrossRefPubMedGoogle Scholar
  4. 4.
    Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760. https://doi.org/10.1146/annurev.cb.06.110190.003435CrossRefPubMedGoogle Scholar
  5. 5.
    Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20(3):389–399CrossRefGoogle Scholar
  6. 6.
    Sudhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28(2):317–320CrossRefGoogle Scholar
  7. 7.
    Rusakov DA, Stewart MG, Korogod SM (1996) Branching of active dendritic spines as a mechanism for controlling synaptic efficacy. Neuroscience 75(1):315–323CrossRefGoogle Scholar
  8. 8.
    Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. https://doi.org/10.1016/j.neuron.2012.02.011CrossRefPubMedGoogle Scholar
  9. 9.
    Kobayashi C, Ohkura M, Nakai J, Matsuki N, Ikegaya Y, Sasaki T (2014) Large-scale imaging of subcellular calcium dynamics of cortical neurons with G-CaMP6-actin. Neuroreport 25(7):501–506. https://doi.org/10.1097/WNR.0000000000000126CrossRefPubMedGoogle Scholar
  10. 10.
    Birkner A, Tischbirek CH, Konnerth A (2017) Improved deep two-photon calcium imaging in vivo. Cell Calcium 64:29–35. https://doi.org/10.1016/j.ceca.2016.12.005CrossRefPubMedGoogle Scholar
  11. 11.
    Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690. https://doi.org/10.1016/j.neuron.2013.10.022CrossRefPubMedGoogle Scholar
  12. 12.
    Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516. (Pt 1:1–17CrossRefGoogle Scholar
  13. 13.
    Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, Mor Y, Rizzoli S, Slutsky I (2016) IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron 89(3):583–597. https://doi.org/10.1016/j.neuron.2015.12.034CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Popugaeva E, Pchitskaya E, Bezprozvanny I (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer's disease - a therapeutic opportunity? Biochem Biophys Res Commun 483(4):998–1004. https://doi.org/10.1016/j.bbrc.2016.09.053CrossRefPubMedGoogle Scholar
  15. 15.
    Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273. https://doi.org/10.1089/ars.2010.3386CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zanni G, Cali T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, Montecchi-Palazzi L, Hu H, Chelly J, Bertini E, Brini M, Carafoli E (2012) Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci USA 109(36):14514–14519. https://doi.org/10.1073/pnas.1207488109CrossRefPubMedGoogle Scholar
  17. 17.
    Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283(9):5780–5789. https://doi.org/10.1074/jbc.M704704200CrossRefPubMedGoogle Scholar
  18. 18.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404CrossRefGoogle Scholar
  19. 19.
    Lock JT, Parker I, Smith IF (2015) A comparison of fluorescent Ca(2)(+) indicators for imaging local Ca(2)(+) signals in cultured cells. Cell Calcium 58(6):638–648. https://doi.org/10.1016/j.ceca.2015.10.003CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46(3):143–151. https://doi.org/10.1016/j.ymeth.2008.09.025CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hires SA, Tian L, Looger LL (2008) Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36(1–4):69–86. https://doi.org/10.1007/s11068-008-9029-4CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tian L, Akerboom J, Schreiter ER, Looger LL (2012) Neural activity imaging with genetically encoded calcium indicators. Prog Brain Res 196:79–94. https://doi.org/10.1016/B978-0-444-59426-6.00005-7CrossRefPubMedGoogle Scholar
  23. 23.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. https://doi.org/10.1038/nature12354CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Irena Vertkin
    • 1
  • Dalit Ben-Yosef
    • 2
  1. 1.Department of Cell and Developmental Biology, Tel Aviv Sourasky Medical CenterTel Aviv UniversityTel AvivIsrael
  2. 2.Wolfe PGD Stem Cell Lab, Racine IVF Unit at Lis Maternity HospitalTel Aviv Sourasky Medical Center, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations