Preparation of Synaptoneurosomes for the Study of Glutamate Receptor Function

  • Cara J. WestmarkEmail author
  • Pamela R. Westmark
Part of the Methods in Molecular Biology book series (MIMB, volume 1941)


The use of synaptoneurosomes (SN) enables the detection of synaptic activity including the assessment of glutamate receptor function. SN are normally prepared by filtration and centrifugation methods. Here we review the preparation of SN by Percoll density gradient methodology for downstream applications that assesses glutamate receptor function such as measuring de novo protein synthesis. Major procedural steps include preparation of discontinuous Percoll-sucrose density gradients, collection of brain tissue, preparation of brain homogenates, isolation of synaptoneurosome bands from the discontinuous Percoll-sucrose gradients, and radiolabeling SN proteins. De novo protein synthesis can be reproducibly measured in SN prepared by this method.

Key words

Amyloid precursor protein (APP) Fragile X mental retardation protein (FMRP) Gradient Metabotropic glutamate receptor (mGluR) Percoll Postsynaptic density Protein synthesis Synaptoneurosomes 


  1. 1.
    Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261CrossRefGoogle Scholar
  2. 2.
    Dunkley PR, Heath JW, Harrison SM et al (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441(1–2):59–71CrossRefGoogle Scholar
  3. 3.
    Bagni C, Mannucci L, Dotti CG, Amaldi F (2000) Chemical stimulation of synaptosomes modulates alpha -Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. J Neurosci 20(10):RC76CrossRefGoogle Scholar
  4. 4.
    Westmark PR, Westmark CJ, Jeevananthan A, Malter JS (2011) Preparation of synaptoneurosomes from mouse cortex using a discontinuous Percoll-sucrose density gradient. J Vis Exp (55):3196.
  5. 5.
    Harrison SM, Jarvie PE, Dunkley PR (1988) A rapid percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res 441(1–2):72–80CrossRefGoogle Scholar
  6. 6.
    Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5(3):e52CrossRefGoogle Scholar
  7. 7.
    Westmark PR, Westmark CJ, Wang S et al (2010) Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal 3(112):ra18CrossRefGoogle Scholar
  8. 8.
    Gerstner JR, Vanderheyden WM, LaVaute T et al (2012) Time of day regulates subcellular trafficking, tripartite synaptic localization, and polyadenylation of the astrocytic Fabp7 mRNA. J Neurosci 32(4):1383–1394CrossRefGoogle Scholar
  9. 9.
    Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1(3):297–317CrossRefGoogle Scholar
  10. 10.
    Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750CrossRefGoogle Scholar
  11. 11.
    Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377CrossRefGoogle Scholar
  12. 12.
    Westmark CJ, Westmark PR, O’Riordan KJ et al (2011) Reversal of fragile X phenotypes by manipulation of AbetaPP/Abeta levels in Fmr1 mice. PLoS One 6(10):e26549CrossRefGoogle Scholar
  13. 13.
    Westmark CJ, Chuang SC, Hays SA et al (2016) APP causes hyperexcitability in fragile X mice. Front Mol Neurosci 9:147CrossRefGoogle Scholar
  14. 14.
    Westmark CJ, Berry-Kravis EM, Ikonomidou C et al (2013) Developing BACE-1 inhibitors for FXS. Front Cell Neurosci 7:77PubMedPubMedCentralGoogle Scholar
  15. 15.
    Westmark C (2014) Group 1 metabotropic glutamate receptors: a potential therapeutic target for amyloidogenic disorders. In: Olive F (ed) Metabotropic glutamate receptors: molecular mechanisms, role in neurological disorders, and pharmacological effects. Nova Biomedical, New YorkGoogle Scholar
  16. 16.
    Westmark CJ (2014) The quest for fragile X biomarkers. Mol Cell Pediatr 1(1). 1-014-0001-3. Epub 2014 Sep 4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of WisconsinMadisonUSA

Personalised recommendations