Advertisement

Astrocytes pp 219-229 | Cite as

Native Chromatin Immunoprecipitation (N-ChIP) in Primary Cortical Rat Astrocytes

  • Victoria Adelheid Malik
  • Barbara Di Benedetto
  • Mira JakovcevskiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

Chromatin immunoprecipitation (ChIP) in conjunction with qPCR or next generation sequencing (ChIP-seq) is used to detect protein–DNA interaction. Typically, DNA bound to a protein of interest is captured with an antibody against this protein, and DNA is then purified from DNA–protein complexes. Here, we describe a native Chromatin immunoprecipitation (N-ChIP) approach which is an efficient ChIP method with high resolution for histone modifications and a number of transcription factors. This protocol has been tailored for cultured primary rat astrocytes, and we included the preparation of astrocytic cell cultures in this protocol.

Key words

ChIP-sequencing (ChIP-seq) Histone H3 lysine 4 trimethylation (H3K4me3) Native chromatin immunoprecipitation (N-ChIP) Astrocytes 

Notes

Acknowledgments

The work of Dr. Mira Jakovcevski (MJ) was supported by a NARSAD Young Investigator Grant (#22809) from the Brain and Behavior Research Foundation. MJ is an “Attias Family Foundation Investigator.” The authors thank Dr. Tobias Straub for analysis of H3K4me3 sequencing data. The work of Dr. Barbara Di Benedetto (BDB) was supported by intramural funding from the University of Regensburg, by the German Federal Ministry of Education and Research (BMBF Grant 01EE1401A), and by the German Research Council (DFG GRK2174).

References

  1. 1.
    Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci U S A 107(19):8824–8829CrossRefGoogle Scholar
  2. 2.
    Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC, Schuetz AL, Burkhardt S, Benito E, Navarro Sala M, Javan SB, Haass C, Schmid B, Fischer A, Bonn S (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19(1):102–110CrossRefGoogle Scholar
  3. 3.
    Jakovcevski M, Akbarian S, Di Benedetto B (2016) Pharmacological modulation of astrocytes and the role of cell type-specific histone modifications for the treatment of mood disorders. Curr Opin Pharmacol 26:61–66CrossRefGoogle Scholar
  4. 4.
    Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R, Eddy SR, Ecker JR, Nathans J (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86(6):1369–1384CrossRefGoogle Scholar
  5. 5.
    Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216(1):75–84CrossRefGoogle Scholar
  6. 6.
    Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61(12):1939–1958CrossRefGoogle Scholar
  7. 7.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215CrossRefGoogle Scholar
  8. 8.
    Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, Rupprecht R (2016) Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front Cell Neurosci 10:8–12CrossRefGoogle Scholar
  9. 9.
    Perez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14(11):1220–1224CrossRefGoogle Scholar
  10. 10.
    Santello M, Cali C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331CrossRefGoogle Scholar
  11. 11.
    Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, Marques F, Cerqueira JJ, Pinto L, Sousa N, Oliveira JF (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19(7):834–841CrossRefGoogle Scholar
  12. 12.
    Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73(12):1172–1179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Victoria Adelheid Malik
    • 1
  • Barbara Di Benedetto
    • 1
    • 2
  • Mira Jakovcevski
    • 3
    Email author
  1. 1.Department of Psychiatry and Psychotherapy, Faculty of MedicineUniversity of RegensburgRegensburgGermany
  2. 2.Regensburg Center of NeuroscienceUniversity of RegensburgRegensburgGermany
  3. 3.Department of Stress Neurobiology and NeurogeneticsMax Planck Institute of PsychiatryMunichGermany

Personalised recommendations