Advertisement

Astrocytes pp 131-154 | Cite as

Astrocytes and Circadian Rhythms: An Emerging Astrocyte–Neuron Synergy in the Timekeeping System

  • Olga Barca Mayo
  • Luca Berdondini
  • Davide De Pietri Tonelli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

Animals have an internal timekeeping system to anticipate daily changes associated with the transition of day to night, which is deeply involved in the regulation and maintenance of behavioral and physiological processes. Prevailing knowledge associated the control of circadian clocks to a network of neurons in the central pacemaker, the suprachiasmatic nucleus (SCN), but astrocytes are rapidly emerging as key cellular contributors to the timekeeping system. However, how these glial cells impact the neuronal clock to modulate rhythmic neurobehavioral outputs just begin to be investigated. Astrocyte–neuron cocultures are an excellent exploratory method to further characterize the critical role of circadian communication between nerve cells, as well as to address the role of astrocytes as modulators and targets of neuronal rhythmic behaviors. Here, we describe a robust method to study astrocyte rhythmic interactions with neurons by coculturing them with primary neurons in physically separated layers. This simple coculture system provides hints on in vivo signaling processes. Moreover, it allows investigating cell-type specific effects separately as well as the identification of extracellular astrocytic or neuronal factors involved in rhythm generation in both cell types.

Key words

Circadian rhythms Astrocytes Neurons Coculture Clock genes 

Notes

Acknowledgments

We thank M. Nanni and C. Chiabrera for their excellent support with the neuronal cultures. This work was supported by Fondazione Istituto Italiano di Tecnologia and by the European Research Executive Agency (REA) through the FP7-PEOPLE-2014-IEF “ASTROCLOCK” (629867) and Fondazione CARIPLO research grant (2015-0590).

References

  1. 1.
    Takahashi JS, Hong H, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775CrossRefGoogle Scholar
  2. 2.
    Doherty CJ, Kay SA (2010) Circadian control of global gene expression patterns. Annu Rev Genet 44:419–444CrossRefGoogle Scholar
  3. 3.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937CrossRefGoogle Scholar
  4. 4.
    Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ 3rd, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616CrossRefGoogle Scholar
  5. 5.
    Maywood ES, Chesham JE, O'Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108(34):14306–14311CrossRefGoogle Scholar
  6. 6.
    Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530CrossRefGoogle Scholar
  7. 7.
    Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63CrossRefGoogle Scholar
  8. 8.
    Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192CrossRefGoogle Scholar
  9. 9.
    Sul JY, Orosz G, Rs G, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biol 1:3–11CrossRefGoogle Scholar
  10. 10.
    Tian GF, Takano T, Lin JH, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787CrossRefGoogle Scholar
  11. 11.
    Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408CrossRefGoogle Scholar
  12. 12.
    Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8:14336CrossRefGoogle Scholar
  13. 13.
    Marpegan L, Krall TJ, Herzog ED (2009) Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythm 24(2):135–143CrossRefGoogle Scholar
  14. 14.
    Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31(23):8342–8350CrossRefGoogle Scholar
  15. 15.
    Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11(1):35–42CrossRefGoogle Scholar
  16. 16.
    Prosser RA, Edgar DM, Heller HC, Miller JD (1994) A possible glial role in the mammalian circadian clock. Brain Res 643(1–2):296–301CrossRefGoogle Scholar
  17. 17.
    Shinohara K, Funabashi T, Mitushima D, Kimura F (2000) Effects of gap junction blocker on vasopressin and vasoactive intestinal polypeptide rhythms in the rat suprachiasmatic nucleus in vitro. Neurosci Res 38(1):43–47CrossRefGoogle Scholar
  18. 18.
    Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447CrossRefGoogle Scholar
  19. 19.
    Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21(8):625–634CrossRefGoogle Scholar
  20. 20.
    Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the Suprachiasmatic nucleus via Glutamatergic signaling. Neuron 93(6):1420–1435.e5CrossRefGoogle Scholar
  21. 21.
    Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED (2017) Astrocytes regulate daily rhythms in the Suprachiasmatic nucleus and behavior. Curr Biol 27(7):1055–1061CrossRefGoogle Scholar
  22. 22.
    McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902CrossRefGoogle Scholar
  23. 23.
    Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178CrossRefGoogle Scholar
  24. 24.
    Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29(6):999–1005CrossRefGoogle Scholar
  25. 25.
    Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487CrossRefGoogle Scholar
  26. 26.
    Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367CrossRefGoogle Scholar
  27. 27.
    Skytt DM, Madsen KK, Pajęcka K, Schousboe A, Waagepetersen HS (2010) Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 35(12):2043–2052CrossRefGoogle Scholar
  28. 28.
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278CrossRefGoogle Scholar
  29. 29.
    Bloch G, Herzog ED, Levine JD, Schwartz WJ (2013) Socially synchronized circadian oscillators. Proc Biol Sci 280(1765):20130035CrossRefGoogle Scholar
  30. 30.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705CrossRefGoogle Scholar
  31. 31.
    Halberg F, Tong YL, Johnson EA (1967) Circadian system phase, an aspect of temporal morphology: procedures and illustrative examples. In: von Mayersbach H (ed) The cellular aspects of biorhythms. Springer, Berlin, pp 20–48CrossRefGoogle Scholar
  32. 32.
    Cornélissen G, Halberg F (2005) Chronomedicine. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics 2, vol 2. Wiley, New York, pp 796–812Google Scholar
  33. 33.
    Skoff RP, Knapp PE (1991) Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages. Glia 4(2):165–174CrossRefGoogle Scholar
  34. 34.
    Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484(7394):376–380CrossRefGoogle Scholar
  35. 35.
    Lim R, Mitsunobu K, Li WK (1993) Maturation-stimulating effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp Eye Res 79:243–246Google Scholar
  36. 36.
    Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310CrossRefGoogle Scholar
  37. 37.
    Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238CrossRefGoogle Scholar
  38. 38.
    Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3:e00062CrossRefGoogle Scholar
  39. 39.
    Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, Cahoy JD, Daneman R, Zong H, Ellisman MH, Barres BA (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71(5):799–811CrossRefGoogle Scholar
  40. 40.
    Jungblut M, Tiveron MC, Barral S, Abrahamsen B, Knöbel S, Pennartz S, Schmitz J, Perraut M, Pfrieger FW, Stoffel W, Cremer H, Bosio A (2012) Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 60(6):894–907CrossRefGoogle Scholar
  41. 41.
    Codeluppi S, Gregory EN, Kjell J, Wigerblad G, Olson L, Svensson CI (2011) Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J Neurosci Methods 197:118–127CrossRefGoogle Scholar
  42. 42.
    Barca O, Ferré S, Seoane M, Prieto JM, Lema M, Señarís R, Arce VM (2003) Interferon beta promotes survival in primary astrocytes through phosphatidylinositol 3-kinase. J Neuroimmunol 139(1-2):155–159CrossRefGoogle Scholar
  43. 43.
    Barca O, Seoane M, Ferré S, Prieto JM, Lema M, Señarís R, Arce VM (2007) Mechanisms of interferon-β-induced survival in fetal and neonatal primary astrocytes. Neuroimmunomodulation 14:39–45CrossRefGoogle Scholar
  44. 44.
    Barca O, Costoya JA, Señarís RM, Arce VM (2008) Interferon-beta protects astrocytes against tumour necrosis factor-induced apoptosis via activation of p38 mitogen-activated protein kinase. Exp Cell Res 314(11–12):2231–2237CrossRefGoogle Scholar
  45. 45.
    Abe T, Takahashi S, Suzuki N (2006) Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 26(2):153–160CrossRefGoogle Scholar
  46. 46.
    Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev Neurosci 20(4-5):310–320CrossRefGoogle Scholar
  47. 47.
    Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2(2):e00030CrossRefGoogle Scholar
  48. 48.
    Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68CrossRefGoogle Scholar
  49. 49.
    Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4(2):e00078CrossRefGoogle Scholar
  50. 50.
    Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26CrossRefGoogle Scholar
  51. 51.
    Crocker SJ, Frausto RF, Whitton JL, Milner R (2008) A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 56(11):1187–1198CrossRefGoogle Scholar
  52. 52.
    Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y (2010) Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 109(1):30–37PubMedGoogle Scholar
  53. 53.
    Norton WT, Farooq M (1989) Astrocytes cultured from mature brain derive from glial precursor cells. J Neurosci 9(3):769–775CrossRefGoogle Scholar
  54. 54.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9-10):1439–1451CrossRefGoogle Scholar
  55. 55.
    Beaulé C, Swanstrom A, Leone MJ, Herzog ED (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS One 4(10):e7476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olga Barca Mayo
    • 1
  • Luca Berdondini
    • 2
  • Davide De Pietri Tonelli
    • 1
  1. 1.Neurobiology of miRNAs Laboratory, Neuroscience and Brain Technologies DepartmentFondazione Istituto Italiano di TecnologiaGenoaItaly
  2. 2.Microtechnology for Neuroelectronics (Nets3) Laboratory, Neuroscience and Brain Technologies DepartmentFondazione Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations