Advertisement

Design, Construction, and Application of Transcription Activation-Like Effectors

  • Peter Deng
  • Sakereh Carter
  • Kyle FinkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1937)

Abstract

Transcription activator-like effectors (TALEs) are modular proteins derived from the plant Xanthomonas sp. pathogen that can be designed to target unique DNA sequences following a simple cipher. Customized TALE proteins can be used in a variety of molecular applications that include gene editing and transcriptional modulation. Presently, we provide a brief primer on the design and construction of TALEs. TALE proteins can be fused to a variety of different effector domains that alter the function of the TALE upon binding. This flexibility of TALE design and downstream effect may offer therapeutic applications that are discussed in this section. Finally, we provide a future perspective on TALE technology and what challenges remain for successful translation of gene-editing strategies to the clinic.

Key words

Gene editing TALEs Nucleases Artificial transcription factor Chromatin remodeling DNA binding Huntington’s disease 

References

  1. 1.
    Boch J, Scholze H, Schornack S et al (2009) Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science 326(80):1509–1512.  https://doi.org/10.1126/science.1178811CrossRefPubMedGoogle Scholar
  2. 2.
    Mak AN-S, Bradley P, Cernadas RA et al (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719.  https://doi.org/10.1126/science.1216211CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595.  https://doi.org/10.1038/nbt.2304CrossRefPubMedGoogle Scholar
  4. 4.
    Deng D, Yin P, Yan C et al (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504.  https://doi.org/10.1038/cr.2012.127CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guilinger JP, Pattanayak V, Reyon D et al (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435.  https://doi.org/10.1038/nmeth.2845CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Römer P, Recht S, Strauß T et al (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057.  https://doi.org/10.1111/j.1469-8137.2010.03217.xCrossRefPubMedGoogle Scholar
  7. 7.
    Lamb BM, Mercer AC, Barbas CF (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41:9779–9785.  https://doi.org/10.1093/nar/gkt754CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Meckler JF, Bhakta MS, Kim M-S et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128.  https://doi.org/10.1093/nar/gkt085CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82.  https://doi.org/10.1093/nar/gkr218CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153.  https://doi.org/10.1038/nbt.1775CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55.  https://doi.org/10.1038/nrm3486CrossRefPubMedGoogle Scholar
  13. 13.
    Cong L, Zhou R, Kuo Y et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968.  https://doi.org/10.1038/ncomms1962CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148.  https://doi.org/10.1038/nbt.1755CrossRefPubMedGoogle Scholar
  15. 15.
    Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372.  https://doi.org/10.1093/nar/gkq704CrossRefPubMedGoogle Scholar
  16. 16.
    Wood AJ, Lo T-W, Zeitler B et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333(80):307–307.  https://doi.org/10.1126/science.1207773CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696.  https://doi.org/10.1038/nbt.1940CrossRefPubMedGoogle Scholar
  18. 18.
    Wefers B, Meyer M, Ortiz O et al (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A 110:3782–3787.  https://doi.org/10.1073/pnas.1218721110CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sato K, Oiwa R, Kumita W et al (2016) Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell 19:127–138.  https://doi.org/10.1016/j.stem.2016.06.003CrossRefPubMedGoogle Scholar
  20. 20.
    Carlson DF, Tan W, Lillico SG et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci 109:17382–17387.  https://doi.org/10.1073/pnas.1211446109CrossRefPubMedGoogle Scholar
  21. 21.
    Kim E, Kim S, Kim DH et al (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22:1327–1333.  https://doi.org/10.1101/gr.138792.112CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu H, Wang Y, Zhang Y et al (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A 112:E1530–E1539.  https://doi.org/10.1073/pnas.1421587112CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang X, Wang Y, Wu X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–178.  https://doi.org/10.1038/nbt.3127CrossRefPubMedGoogle Scholar
  24. 24.
    Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389.  https://doi.org/10.1016/j.cell.2013.08.021CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qasim W, Thrasher AJ (2014) Progress and prospects for engineered T cell therapies. Br J Haematol 166:818–829.  https://doi.org/10.1111/bjh.12981CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Maeder ML, Linder SJ, Reyon D et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–245.  https://doi.org/10.1038/nmeth.2366CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bultmann S, Morbitzer R, Schmidt CS et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40:5368–5377.  https://doi.org/10.1093/nar/gks199CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gao X, Tsang JCH, Gaba F et al (2014) Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42:e155.  https://doi.org/10.1093/nar/gku836CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perez-Pinera P, Ousterout DG, Brunger JM et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10:239–242.  https://doi.org/10.1038/nmeth.2361CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Uhde-Stone C, Cheung E, Lu B (2014) TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells. Biochem Biophys Res Commun 443:1189–1194.  https://doi.org/10.1016/j.bbrc.2013.12.111CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Z, Xiang D, Heriyanto F et al (2013) Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Reports 1:218–225.  https://doi.org/10.1016/j.stemcr.2013.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Amabile A, Migliara A, Capasso P et al (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232.e14.  https://doi.org/10.1016/j.cell.2016.09.006CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fink KD, Deng P, Gutierrez J et al (2016) Allele-Specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human huntington’s disease fibroblasts. Cell Transplant 25:677–686.  https://doi.org/10.3727/096368916X690863CrossRefPubMedGoogle Scholar
  34. 34.
    Holkers M, Maggio I, Liu J et al (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41:e63–e63.  https://doi.org/10.1093/nar/gks1446CrossRefPubMedGoogle Scholar
  35. 35.
    Yang L, Guell M, Byrne S et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061.  https://doi.org/10.1093/nar/gkt555CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hathaway NA, Bell O, Hodges C et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460.  https://doi.org/10.1016/j.cell.2012.03.052CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Munye MM, Tagalakis AD, Barnes JL et al (2016) Minicircle DNA provides enhanced and prolonged transgene expression following airway gene transfer. Sci Rep 6:23125.  https://doi.org/10.1038/srep23125CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lewis O, Woolley M, Johnson D et al (2016) Chronic, intermittent convection-enhanced delivery devices. J Neurosci Methods 259:47–56.  https://doi.org/10.1016/j.jneumeth.2015.11.008CrossRefPubMedGoogle Scholar
  39. 39.
    Kay MA, He C-Y, Chen Z-Y (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289.  https://doi.org/10.1038/nbt.1708CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lu J, Zhang F, Kay MA (2013) A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 21:954–963.  https://doi.org/10.1038/mt.2013.33CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu J, Williams JA, Luke J et al (2017) A 5′ noncoding exon containing engineered intron enhances transgene expression from recombinant AAV vectors in vivo. Hum Gene Ther 28:125–134.  https://doi.org/10.1089/hum.2016.140CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Montague TG, Cruz JM, Gagnon JA et al (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407.  https://doi.org/10.1093/nar/gku410CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stem Cell Program and Institute for Regenerative CuresUniversity of California, DavisSacramentoUSA
  2. 2.Genome Center, MIND Institute, and Biochemistry and Molecular MedicineUniversity of California, DavisDavisUSA
  3. 3.Department of NeurologyUniversity of California Davis SacramentoUSA

Personalised recommendations