Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing

  • Ivette M. SandovalEmail author
  • Timothy J. Collier
  • Fredric P. Manfredsson
Part of the Methods in Molecular Biology book series (MIMB, volume 1937)


Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) system has emerged as an extremely useful tool for biological research and as a potential technology for gene therapy approaches. CRISPR/Cas mediated genome editing can be used to easily and efficiently modify endogenous genes in a large variety of cells and organisms. Furthermore, a modified version of the Cas9 nuclease has been developed that can be used for regulation of endogenous gene expression and labeling of genomic loci, among other applications. This chapter provides an introduction to the basis of the technology and a detail protocol for the most classic application: gene inactivation by CRISPR/Cas9 nuclease system from Streptococcus pyogenes. This workflow can be easily adapted for other CRISPR systems and applications.

Key words

Gene editing Gene inactivation CRISPR/Cas9 Cas9 nuclease LV AAV guideRNA 


  1. 1.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefGoogle Scholar
  2. 2.
    Makarova KS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736CrossRefGoogle Scholar
  3. 3.
    Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78CrossRefGoogle Scholar
  4. 4.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170CrossRefGoogle Scholar
  5. 5.
    Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefGoogle Scholar
  6. 6.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefGoogle Scholar
  7. 7.
    Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  8. 8.
    Pyzocha NK, Chen S (2018) Diverse class 2 CRISPR-cas effector proteins for genome engineering applications. ACS Chem Biol 13(2):347–356CrossRefGoogle Scholar
  9. 9.
    Kleinstiver BP et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485CrossRefGoogle Scholar
  10. 10.
    Mali P et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838CrossRefGoogle Scholar
  11. 11.
    Kim E et al (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22(7):1327–1333CrossRefGoogle Scholar
  12. 12.
    Ran FA et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389CrossRefGoogle Scholar
  13. 13.
    Shen B et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402CrossRefGoogle Scholar
  14. 14.
    Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88CrossRefGoogle Scholar
  15. 15.
    Kleinstiver BP et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495CrossRefGoogle Scholar
  16. 16.
    Kuscu C et al (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683CrossRefGoogle Scholar
  17. 17.
    Wang T et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84CrossRefGoogle Scholar
  18. 18.
    Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87CrossRefGoogle Scholar
  19. 19.
    Sakuma T et al (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400CrossRefGoogle Scholar
  20. 20.
    Konermann S et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588CrossRefGoogle Scholar
  21. 21.
    Perez-Pinera P et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976CrossRefGoogle Scholar
  22. 22.
    Larson MH et al (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8(11):2180–2196CrossRefGoogle Scholar
  23. 23.
    McDonald JI et al (2016) Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 5(6):866–874CrossRefGoogle Scholar
  24. 24.
    Tanenbaum ME et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646CrossRefGoogle Scholar
  25. 25.
    Chaudhary K, Chattopadhyay A, Pratap D (2018) The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol Lett 40(3):465–477CrossRefGoogle Scholar
  26. 26.
    Friedland AE et al (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257CrossRefGoogle Scholar
  27. 27.
    Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191CrossRefGoogle Scholar
  28. 28.
    Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefGoogle Scholar
  29. 29.
    Abudayyeh OO et al (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284CrossRefGoogle Scholar
  30. 30.
    DiCarlo JE, Deeconda A, Tsang SH (2017) Viral vectors, engineered cells and the CRISPR revolution. Adv Exp Med Biol 1016:3–27CrossRefGoogle Scholar
  31. 31.
    Glass Z et al (2018) Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 36(2):173–185CrossRefGoogle Scholar
  32. 32.
    Swiech L et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1):102–106CrossRefGoogle Scholar
  33. 33.
    Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123CrossRefGoogle Scholar
  34. 34.
    Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345CrossRefGoogle Scholar
  35. 35.
    Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361CrossRefGoogle Scholar
  36. 36.
    Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784CrossRefGoogle Scholar
  37. 37.
    Kulinski J et al (2000) CEL I enzymatic mutation detection assay. BioTechniques 29(1):44–6, 48CrossRefGoogle Scholar
  38. 38.
    Pimkin M et al (2007) Recombinant nucleases CEL I from celery and SP I from spinach for mutation detection. BMC Biotechnol 7:29CrossRefGoogle Scholar
  39. 39.
    Choi VW, Samulski RJ, McCarty DM (2005) Effects of adeno-associated virus DNA hairpin structure on recombination. J Virol 79(11):6801–6807CrossRefGoogle Scholar
  40. 40.
    Chakiath CS, Esposito D (2007) Improved recombinational stability of lentiviral expression vectors using reduced-genome Escherichia coli. BioTechniques 43(4):466, 468, 470CrossRefGoogle Scholar
  41. 41.
    Mao Z et al (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7(10):1765–1771CrossRefGoogle Scholar
  42. 42.
    Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147CrossRefGoogle Scholar
  43. 43.
    Zaboikin M, Freter C, Srinivasakumar N (2018) Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency. PLoS One 13(1):e0190192CrossRefGoogle Scholar
  44. 44.
    Ota S et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18(6):450–458CrossRefGoogle Scholar
  45. 45.
    Nakagawa Y et al (2014) Screening methods to identify TALEN-mediated knockout mice. Exp Anim 63(1):79–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ivette M. Sandoval
    • 1
    • 2
    Email author
  • Timothy J. Collier
    • 1
    • 2
  • Fredric P. Manfredsson
    • 1
    • 2
  1. 1.Department of Translational Science & Molecular Medicine, College of Human MedicineMichigan State UniversityGrand RapidsUSA
  2. 2.Mercy Health Saint Mary’sGrand RapidsUSA

Personalised recommendations