Advertisement

Basic Concepts in Viral Vector-Mediated Gene Therapy

  • Matthew J. Benskey
  • Ivette M. Sandoval
  • Kathryn Miller
  • Rhyomi L. Sellnow
  • Aysegul Gezer
  • Nathan C. Kuhn
  • Roslyn Vashon
  • Fredric P. ManfredssonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1937)

Abstract

Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.

Key words

Viral vector Gene therapy Adeno-associated virus Lentivirus Adenovirus Herpes-simplex virus 

References

  1. 1.
    Samulski RJ, Berns KI, Tan M et al (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79:2077–2081PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Samaranch L, Salegio EA, San Sebastian W et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 23:382–389PubMedCrossRefGoogle Scholar
  3. 3.
    Castle MJ, Turunen HT, Vandenberghe LH et al (2016) Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol 1382:133–149PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154PubMedCrossRefGoogle Scholar
  5. 5.
    Boutin S, Monteilhet V, Veron P et al (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712PubMedCrossRefGoogle Scholar
  6. 6.
    Peden CS, Burger C, Muzyczka N et al (2004) Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78:6344–6359PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Peden CS, Manfredsson FP, Reimsnider SK et al (2009) Striatal readministration of rAAV vectors reveals an immune response against AAV2 capsids that can be circumvented. Mol Ther 17:524–537PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12(Suppl 1):S18–S27PubMedCrossRefGoogle Scholar
  9. 9.
    Gallo P, Dharmapuri S, Cipriani B et al (2005) Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 12(Suppl 1):S84–S91PubMedCrossRefGoogle Scholar
  10. 10.
    Benskey MJ, Manfredsson FP (2016) Lentivirus production and purification. Methods Mol Biol 1382:107–114PubMedCrossRefGoogle Scholar
  11. 11.
    Kobayashi K, Kato S, Inoue K et al (2016) Altering entry site preference of lentiviral vectors into neuronal cells by pseudotyping with envelope glycoproteins. Methods Mol Biol 1382:175–186PubMedCrossRefGoogle Scholar
  12. 12.
    Cannon JR, Sew T, Montero L et al (2011) Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp Neurol 228:41–52PubMedCrossRefGoogle Scholar
  13. 13.
    Marconi P, Argnani R, Epstein AL et al (2009) HSV as a vector in vaccine development and gene therapy. Adv Exp Med Biol 655:118–144PubMedCrossRefGoogle Scholar
  14. 14.
    Antinone SE, Smith GA (2010) Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol 84:1504–1512PubMedCrossRefGoogle Scholar
  15. 15.
    Schmeisser F, Weir JP (2007) Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes. BMC Biotechnol 7:22PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Manfredsson FP, Mandel RJ (2011) The development of flexible lentiviral vectors for gene transfer in the CNS. Exp Neurol 229:201–206PubMedCrossRefGoogle Scholar
  17. 17.
    Kato S, Inoue K, Kobayashi K et al (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1151PubMedCrossRefGoogle Scholar
  18. 18.
    Sinn PL, Hickey MA, Staber PD et al (2003) Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 77:5902–5910PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gao G, Vandenberghe LH, Alvira MR et al (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Marsic D, Zolotukhin S (2016) Altering tropism of rAAV by directed evolution. Methods Mol Biol 1382:151–173PubMedCrossRefGoogle Scholar
  22. 22.
    Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394PubMedCrossRefGoogle Scholar
  23. 23.
    Kienle E, Senis E, Borner K et al (2012) Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 62:3819Google Scholar
  24. 24.
    Muller OJ, Kaul F, Weitzman MD et al (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046PubMedCrossRefGoogle Scholar
  25. 25.
    Marsic D, Govindasamy L, Currlin S et al (2014) Vector design Tour de Force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther 22:1900–1909PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bartel M, Schaffer D, Buning H (2011) Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol 2:204PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Horowitz ED, Weinberg MS, Asokan A (2011) Glycated AAV vectors: chemical redirection of viral tissue tropism. Bioconjug Chem 22:529–532PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhong L, Li B, Jayandharan G et al (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kanaan NM, Sellnow RC, Boye SL et al (2017) Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol Ther Nucleic Acids 8:184–197PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Boye SL, Bennett A, Scalabrino ML et al (2016) Impact of heparan sulfate binding on transduction of retina by recombinant adeno-associated virus vectors. J Virol 90:4215–4231PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gulbransen BD (2017) Emerging tools to study enteric neuromuscular function. Am J Physiol 312:G420–G426Google Scholar
  32. 32.
    Bjorklund T (2016) Expression of multiple functional RNAs or proteins from one viral vector. Methods Mol Biol 1382:41–56PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fagoe ND, Eggers R, Verhaagen J et al (2014) A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Ther 21:242–252PubMedCrossRefGoogle Scholar
  34. 34.
    Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Benskey MJ, Sellnow RC, Sandoval IM et al (2018) Silencing alpha synuclein in mature nigral neurons results in rapid neuroinflammation and subsequent toxicity. Front Mol Neurosci 11:36PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    de Leeuw CN, Dyka FM, Boye SL et al (2014) Targeted CNS delivery using human minipromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther Methods Clin Dev 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ngoi SM, Chien AC, Lee CG (2004) Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 4:15–31PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mizuguchi H, Xu Z, Ishii-Watabe A et al (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382PubMedCrossRefGoogle Scholar
  40. 40.
    Kim JH, Lee SR, Li LH et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Donnelly ML, Luke G, Mehrotra A et al (2001) Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip. J Gen Virol 82:1013–1025PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Donnelly ML, Hughes LE, Luke G et al (2001) The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. J Gen Virol 82:1027–1041PubMedCrossRefGoogle Scholar
  43. 43.
    Liu Z, Chen O, Wall JBJ et al (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Molecular therapy : the journal of the American Society of. Gene Ther 16:1648–1656Google Scholar
  45. 45.
    Raj D, Davidoff AM, Nathwani AC (2011) Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges. Expert Rev Hematol 4:539–549PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8:1248–1254PubMedCrossRefGoogle Scholar
  47. 47.
    Atasoy D, Aponte Y, Su HH et al (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Saunders A, Johnson CA, Sabatini BL (2012) Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front Neural Circuits 6:47PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schnutgen F, Doerflinger N, Calleja C et al (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21:562–565PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hirsch ML, Wolf SJ, Samulski RJ (2016) Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol 1382:21–39PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18:87–92PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86PubMedCrossRefGoogle Scholar
  53. 53.
    Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4:383–391PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18:6–8PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hsu CC, Li HP, Hung YH et al (2010) Targeted methylation of CMV and E1A viral promoters. Biochem Biophys Res Commun 402:228–234PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Papadakis ED, Nicklin SA, Baker AH et al (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 4:89–113PubMedCrossRefGoogle Scholar
  57. 57.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Gorski K, Carneiro M, Schibler U (1986) Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776PubMedCrossRefGoogle Scholar
  59. 59.
    Rindt H, Gulick J, Knotts S et al (1993) In vivo analysis of the murine beta-myosin heavy chain gene promoter. J Biol Chem 268:5332–5338PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kugler S (2016) Tissue-specific promoters in the CNS. Methods Mol Biol 1382:81–91PubMedCrossRefGoogle Scholar
  61. 61.
    Su ZZ, Sarkar D, Emdad L et al (2005) Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A 102:1059–1064PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wettergren EE, Gussing F, Quintino L et al (2012) Novel disease-specific promoters for use in gene therapy for Parkinson's disease. Neurosci Lett 530:29–34PubMedCrossRefGoogle Scholar
  63. 63.
    Greco O, Marples B, Dachs GU et al (2002) Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther 9:1403–1411PubMedCrossRefGoogle Scholar
  64. 64.
    Shimizu-Sato S, Huq E, Tepperman JM et al (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044PubMedCrossRefGoogle Scholar
  65. 65.
    Chen R, Meseck ML, Woo SL (2001) Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol Ther 3:584–590PubMedCrossRefGoogle Scholar
  66. 66.
    Portales-Casamar E, Swanson DJ, Liu L et al (2010) A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 107:16589–16594PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Majewska M, Wysokinska H, Kuzma L et al (2018) Eukaryotic and prokaryotic promoter databases as valuable tools in exploring the regulation of gene transcription: a comprehensive overview. Gene 644:38–48PubMedCrossRefGoogle Scholar
  68. 68.
    Dreos R, Ambrosini G, Groux R et al (2017) The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res 45:D51–D55PubMedCrossRefGoogle Scholar
  69. 69.
    Dreos R, Ambrosini G, Perier RC et al (2015) The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43:D92–D96PubMedCrossRefGoogle Scholar
  70. 70.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Manfredsson FP, Burger C, Rising AC et al (2009) Tight Long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 17:1857–1867PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chtarto A, Yang X, Bockstael O et al (2007) Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol 204:387–399PubMedCrossRefGoogle Scholar
  73. 73.
    Quintino L, Manfre G, Wettergren EE et al (2013) Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson's disease. Mol ther 21:2169–2180PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Breger L, Wettergren EE, Quintino L et al (2016) Regulated gene therapy. Methods Mol Biol 1382:57–66PubMedCrossRefGoogle Scholar
  75. 75.
    Arimbasseri AG, Rijal K, Maraia RJ (2014) Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5:e27639PubMedCrossRefGoogle Scholar
  76. 76.
    Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592PubMedCrossRefGoogle Scholar
  78. 78.
    Ma H, Wu Y, Dang Y et al (2014) Pol III promoters to express small RNAs: delineation of transcription initiation. Mol Ther Nucleic Acids 3:e161PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141PubMedCrossRefGoogle Scholar
  80. 80.
    Dreosti E, Odermatt B, Dorostkar MM et al (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li H, Foss SM, Dobryy YL et al (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nikolaou N, Lowe AS, Walker AS et al (2012) Parametric functional maps of visual inputs to the tectum. Neuron 76:317–324PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333:1888–1891PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Akerboom J, Carreras Calderon N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Walker AS, Burrone J, Meyer MP (2013) Functional imaging in the zebrafish retinotectal system using RGECO. Front Neural Circuits 7:34PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741PubMedCrossRefGoogle Scholar
  88. 88.
    Sakai R, Repunte-Canonigo V, Raj CD et al (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318PubMedCrossRefGoogle Scholar
  89. 89.
    Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Perron A, Mutoh H, Launey T et al (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195PubMedCrossRefGoogle Scholar
  92. 92.
    Granseth B, Odermatt B, Royle SJ et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786PubMedCrossRefGoogle Scholar
  93. 93.
    Balaji J, Ryan TA (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104:20576–20581PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hanson GT, Aggeler R, Oglesbee D et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053PubMedCrossRefGoogle Scholar
  95. 95.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639PubMedCrossRefGoogle Scholar
  97. 97.
    Spoida K, Eickelbeck D, Karapinar R et al (2016) Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr Biol 26:1206–1212PubMedCrossRefGoogle Scholar
  98. 98.
    Farrell MS, Roth BL (2013) Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res 1511:6–20PubMedCrossRefGoogle Scholar
  99. 99.
    Alexander GM, Rogan SC, Abbas AI et al (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ellis BL, Hirsch ML, Barker JC et al (2013) A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 10:74PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Denning W, Das S, Guo S et al (2013) Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 53:308–314PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193PubMedCrossRefGoogle Scholar
  104. 104.
    Tuszynski MH, Thal L, Pay M et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555PubMedCrossRefGoogle Scholar
  105. 105.
    Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4:143–154PubMedCrossRefGoogle Scholar
  106. 106.
    Duan D (2016) Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 21:16–25PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zincarelli C, Soltys S, Rengo G et al (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080PubMedCrossRefGoogle Scholar
  108. 108.
    Nakai H, Herzog RW, Hagstrom JN et al (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600–4607PubMedGoogle Scholar
  109. 109.
    Gruntman AM, Mueller C, Flotte TR et al (2012) Gene transfer in the lung using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit14D.12Google Scholar
  110. 110.
    Benskey MJ, Manfredsson FP (2016) Intraparenchymal Stereotaxic Delivery of rAAV and Special Considerations in Vector Handling. Methods Mol Biol 1382:199–215PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Matthew J. Benskey
    • 1
  • Ivette M. Sandoval
    • 1
    • 2
  • Kathryn Miller
    • 1
  • Rhyomi L. Sellnow
    • 1
  • Aysegul Gezer
    • 1
  • Nathan C. Kuhn
    • 1
  • Roslyn Vashon
    • 1
  • Fredric P. Manfredsson
    • 1
    • 2
    Email author
  1. 1.Department of Translational Science and Molecular MedicineMichigan State UniversityGrand RapidsUSA
  2. 2.Mercy Health Saint Mary’sGrand RapidsUSA

Personalised recommendations