Advertisement

Estimating Differentiation Potency of Single Cells Using Single-Cell Entropy (SCENT)

  • Weiyan Chen
  • Andrew E. TeschendorffEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

The ability to measure molecular properties (e.g., mRNA expression) at the single-cell level is revolutionizing our understanding of cellular developmental processes and how these are altered in diseases like cancer. The need for computational methods aimed at extracting biological knowledge from such single-cell data has never been greater. Here, we present a detailed protocol for estimating differentiation potency of single cells, based on our Single-Cell ENTropy (SCENT) algorithm. The estimation of differentiation potency is based on an explicit biophysical model that integrates the RNA-Seq profile of a single cell with an interaction network to approximate potency as the entropy of a diffusion process on the network. We here focus on the implementation, providing a step-by-step introduction to the method and illustrating it on a real scRNA-Seq dataset profiling human embryonic stem cells and multipotent progenitors representing the 3 main germ layers. SCENT is aimed particularly at single-cell studies trying to identify novel stem-or-progenitor like phenotypes, and may be particularly valuable for the unbiased identification of cancer stem cells. SCENT is implemented in R, licensed under the GNU General Public Licence v3, and freely available from https://github.com/aet21/SCENT.

Key words

Single-cell RNA-Seq Differentiation potency Network Entropy 

References

  1. 1.
    Waddington CH (1966) Principles of development and differentiation. Macmillan, London, pp 1905–1975Google Scholar
  2. 2.
    Moris N, Pina C, Arias AM (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 17:693–703.  https://doi.org/10.1038/nrg.2016.98CrossRefPubMedGoogle Scholar
  3. 3.
    Levsky JM (2002) Single-cell gene expression profiling. Science 297:836–840.  https://doi.org/10.1126/science.1072241CrossRefPubMedGoogle Scholar
  4. 4.
    Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553:418–426.  https://doi.org/10.1038/nature25022CrossRefPubMedGoogle Scholar
  5. 5.
    Lang AH, Li H, Collins JJ, Mehta P (2014) Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol 10:e1003734.  https://doi.org/10.1371/journal.pcbi.1003734CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tirosh I, Venteicher AS, Hebert C et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–313.  https://doi.org/10.1038/nature20123CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196.  https://doi.org/10.1126/science.aad0501CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63.  https://doi.org/10.1038/nrg2484CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163:799–810.  https://doi.org/10.1016/j.cell.2015.10.039CrossRefPubMedGoogle Scholar
  10. 10.
    Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386.  https://doi.org/10.1038/nbt.2859CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marco E, Karp RL, Guo G et al (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A 111:E5643–E5650.  https://doi.org/10.1073/pnas.1408993111CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Setty M, Tadmor MD, Reich-Zeliger S et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34:637–645.  https://doi.org/10.1038/nbt.3569CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bendall SC, Davis KL, E-AD A et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–725.  https://doi.org/10.1016/j.cell.2014.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen J, Schlitzer A, Chakarov S et al (2016) Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nat Commun 7:11988.  https://doi.org/10.1038/ncomms11988CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Qiu X, Mao Q, Tang Y et al (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982.  https://doi.org/10.1038/nmeth.4402CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rizvi AH, Camara PG, Kandror EK et al (2017) Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol 35:551–560.  https://doi.org/10.1038/nbt.3854CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haghverdi L, Büttner M, Wolf FA et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848.  https://doi.org/10.1038/nmeth.3971CrossRefPubMedGoogle Scholar
  18. 18.
    Angerer P, Haghverdi L, Büttner M et al (2016) Destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32:1241–1243.  https://doi.org/10.1093/bioinformatics/btv715CrossRefPubMedGoogle Scholar
  19. 19.
    Chu L-F, Leng N, Zhang J et al (2016) Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol 17:2315.  https://doi.org/10.1186/s13059-016-1033-xCrossRefGoogle Scholar
  20. 20.
    Grün D, Muraro MJ, Boisset J-C et al (2016) De novo prediction of stem cell identity using single-cell Transcriptome data. Cell Stem Cell 19:266–277.  https://doi.org/10.1016/j.stem.2016.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo M, Bao EL, Wagner M et al (2017) SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Res 45:e54.  https://doi.org/10.1093/nar/gkw1278CrossRefPubMedGoogle Scholar
  22. 22.
    Teschendorff AE, Enver T (2017) Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun 8:15599.  https://doi.org/10.1038/ncomms15599CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gómez-Gardeñes J, Latora V (2008) Entropy rate of diffusion processes on complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 78:114.  https://doi.org/10.1103/PhysRevE.78.065102CrossRefGoogle Scholar
  24. 24.
    Banerji CRS, Miranda-Saavedra D, Severini S et al (2013) Cellular network entropy as the energy potential in Waddington's differentiation landscape. Sci Rep 3:1129.  https://doi.org/10.1038/srep03039CrossRefGoogle Scholar
  25. 25.
    Teschendorff AE, Sollich P, Kuehn R (2014) Signalling entropy: a novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67:282–293.  https://doi.org/10.1016/j.ymeth.2014.03.013CrossRefPubMedGoogle Scholar
  26. 26.
    Banerji CRS, Severini S, Caldas C, Teschendorff AE (2015) Intra-tumour Signalling entropy determines clinical outcome in breast and lung cancer. PLoS Comput Biol 11:e1004115.  https://doi.org/10.1371/journal.pcbi.1004115CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lun ATL, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res 5:2122.  https://doi.org/10.12688/f1000research.9501.2CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McCarthy DJ, Campbell KR, Lun ATL, Wills QF (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 247:btw777.  https://doi.org/10.1093/bioinformatics/btw777CrossRefGoogle Scholar
  29. 29.
    Butler A, Hoffman P, Smibert P et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420.  https://doi.org/10.1038/nbt.4096CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational BiologyShanghai Institute of Nutrition and Health, Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
  2. 2.UCL Cancer InstituteUniversity College LondonLondonUK

Personalised recommendations