Advertisement

scMCA: A Tool to Define Mouse Cell Types Based on Single-Cell Digital Expression

  • Huiyu Sun
  • Yincong Zhou
  • Lijiang Fei
  • Haide Chen
  • Guoji GuoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

For decades, people have been trying to define cell type with the combination of expressed genes. The choice of the limited number of genes for the classification limits the precision of this system. Here, we build a “single-cell Mouse Cell Atlas (scMCA) analysis” pipeline based on scRNA-seq datasets covering all mouse cell types. We build the scMCA reference and then use the tool “scMCA” to match single-cell digital expression to its closest cell type.

Key words

scMCA Mouse Cell Atlas scRNA-seq 

References

  1. 1.
    Han X, Wang R, Zhou Y et al (2018) Mapping the mouse cell atlas by microwell-Seq. Cell 172:1091–107.e17CrossRefGoogle Scholar
  2. 2.
    Campbell JN, Macosko EZ, Fenselau H et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496CrossRefGoogle Scholar
  3. 3.
    Baron M, Veres A, Wolock SL et al (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3:346–60.e4CrossRefGoogle Scholar
  4. 4.
    Zepp JA, Zacharias WJ, Frank DB et al (2017) Distinct Mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170:1134–48.e10CrossRefGoogle Scholar
  5. 5.
    Ibarra-Soria X, Jawaid W, Pijuan-Sala B et al (2018) Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol 20:127–134CrossRefGoogle Scholar
  6. 6.
    Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214CrossRefGoogle Scholar
  7. 7.
    Treutlein B, Brownfield DG, Wu AR et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Huiyu Sun
    • 1
    • 2
  • Yincong Zhou
    • 2
    • 3
  • Lijiang Fei
    • 1
    • 2
  • Haide Chen
    • 1
    • 2
  • Guoji Guo
    • 1
    • 2
    Email author
  1. 1.Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouChina
  2. 2.Stem Cell InstituteZhejiang UniversityHangzhouChina
  3. 3.College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations