Advertisement

Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing

  • Beomseok Kim
  • Eunmin Lee
  • Jong Kyoung KimEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

Profiling the transcriptomes of individual cells with single-cell RNA sequencing (scRNA-seq) has been widely applied to provide a detailed molecular characterization of cellular heterogeneity within a population of cells. Despite recent technological advances of scRNA-seq, technical variability of gene expression in scRNA-seq is still much higher than that in bulk RNA-seq. Accounting for technical variability is therefore a prerequisite for correctly analyzing single-cell data. This chapter describes a computational pipeline for detecting highly variable genes exhibiting higher cell-to-cell variability than expected by technical noise. The basic pipeline using the scater and scran R/Bioconductor packages includes deconvolution-based normalization, fitting the mean-variance trend, testing for nonzero biological variability, and visualization with highly variable genes. An outline of the underlying theory of detecting highly variable genes is also presented. We illustrate how the pipeline works by using two case studies, one from mouse embryonic stem cells with external RNA spike-ins, and the other from mouse dentate gyrus cells without spike-ins.

Key words

Single-cell RNA-seq Technical variability Biological variability Cell-to-cell variability Gene expression noise Highly variable genes 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2017R1C1B2007843, 2017M3C7A1048448, 2017M3A9B6073099, 2017M3A9D5A01052447), and by Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Ministry of SMEs and Startups (C0452791).

References

  1. 1.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382.  https://doi.org/10.1038/nmeth.1315CrossRefPubMedGoogle Scholar
  2. 2.
    Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541(7637):331–338.  https://doi.org/10.1038/nature21350CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620.  https://doi.org/10.1016/j.molcel.2015.04.005CrossRefPubMedGoogle Scholar
  4. 4.
    Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093–1095.  https://doi.org/10.1038/nmeth.2645CrossRefPubMedGoogle Scholar
  5. 5.
    Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9(1):72–74.  https://doi.org/10.1038/nmeth.1778CrossRefPubMedGoogle Scholar
  6. 6.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lonnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166.  https://doi.org/10.1038/nmeth.2772CrossRefPubMedGoogle Scholar
  7. 7.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161(5):1202–1214.  https://doi.org/10.1016/j.cell.2015.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201.  https://doi.org/10.1016/j.cell.2015.04.044CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim JK, Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14(1):R7.  https://doi.org/10.1186/gb-2013-14-1-r7CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133–145.  https://doi.org/10.1038/nrg3833CrossRefPubMedGoogle Scholar
  11. 11.
    Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29.  https://doi.org/10.1186/s13059-016-0888-1CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386.  https://doi.org/10.1038/nbt.2859CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McCarthy DJ, Campbell KR, Lun ATL, Wills QF (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33(8):1179–1186.  https://doi.org/10.1093/bioinformatics/btw777CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lun ATL, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res 5:2122.  https://doi.org/10.12688/f1000research.9501.2CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, Buhler M, Liu P, Marioni JC, Teichmann SA (2015) Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17(4):471–485.  https://doi.org/10.1016/j.stem.2015.09.011CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S (2018) Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci 21(2):290–299.  https://doi.org/10.1038/s41593-017-0056-2CrossRefPubMedGoogle Scholar
  17. 17.
    Kim JK, Kolodziejczyk AA, Ilicic T, Teichmann SA, Marioni JC (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687.  https://doi.org/10.1038/ncomms9687CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bowsher CG, Swain PS (2012) Identifying sources of variation and the flow of information in biochemical networks. Proc Natl Acad Sci U S A 109(20):E1320–E1328.  https://doi.org/10.1073/pnas.1119407109CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517.  https://doi.org/10.1101/gr.079558.108CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lun ATL, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17:75.  https://doi.org/10.1186/s13059-016-0947-7CrossRefPubMedGoogle Scholar
  21. 21.
    Van der Maaten L, Hinton GE (2008) Visualizing Data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of New BiologyDGISTDaeguRepublic of Korea

Personalised recommendations