Advertisement

Single-Cell Allele-Specific Gene Expression Analysis

  • Meichen Dong
  • Yuchao JiangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average gene expression across cells. Single-cell RNA sequencing (scRNA-seq) allows the comparison of expression distribution between the two alleles of a diploid organism, and characterization of allele-specific bursting. Here we describe SCALE, a bioinformatic and statistical framework for allele-specific gene expression analysis by scRNA-seq. SCALE estimates genome-wide bursting kinetics at the allelic level while accounting for technical bias and other complicating factors such as cell size. SCALE detects genes with significantly different bursting kinetics between the two alleles, as well as genes where the two alleles exhibit non-independent bursting processes. Here, we illustrate SCALE on a mouse blastocyst single-cell dataset with step-by-step demonstration from the upstream bioinformatic processing to the downstream biological interpretation of SCALE’s output.

Key words

Single-cell RNA sequencing Allele-specific expression Transcriptional bursting Technical variability 

Notes

Acknowledgment

This work was supported by NIH grant CA142538 and a developmental award from the UNC Lineberger Comprehensive Cancer Center 2017T109 (to YJ). We thank Dr. Nancy R Zhang and Dr. Mingyao Li for helpful comments and suggestions.

References

  1. 1.
    Buckland PR (2004) Allele-specific gene expression differences in humans. Hum Mol Genet 13(2):R255–R260.  https://doi.org/10.1093/hmg/ddh227CrossRefPubMedGoogle Scholar
  2. 2.
    Deng Q, Ramskold D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196.  https://doi.org/10.1126/science.1245316CrossRefGoogle Scholar
  3. 3.
    Reinius B, Sandberg R (2015) Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 16:653–664.  https://doi.org/10.1038/nrg3888CrossRefPubMedGoogle Scholar
  4. 4.
    Reinius B, Mold JE, Ramskold D, Deng Q, Johnsson P, Michaelsson J, Frisen J, Sandberg R (2016) Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet 48:1430–1435.  https://doi.org/10.1038/ng.3678CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM (2011) A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res 21:1728–1737.  https://doi.org/10.1101/gr.119784.110CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Leon-Novelo LG, McIntyre LM, Fear JM, Graze RM (2014) A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 15:920.  https://doi.org/10.1186/1471-2164-15-920CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jiang Y, Zhang NR, Li M (2017) SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Genome Biol 18(1):74.  https://doi.org/10.1186/s13059-017-1200-8CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Benitez JA, Cheng S, Deng Q (2017) Revealing allele-specific gene expression by single-cell transcriptomics. Int J Biochem Cell Biol 90:155–160.  https://doi.org/10.1016/j.biocel.2017.05.029CrossRefPubMedGoogle Scholar
  9. 9.
    Kim JK, Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14:R7.  https://doi.org/10.1186/gb-2013-14-1-r7CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Levesque MJ, Ginart P, Wei Y, Raj A (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10:865–867.  https://doi.org/10.1038/nmeth.2589CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with smart-Seq. Nat Biotechnol 30(8):763–765.  https://doi.org/10.1038/nbt.2325CrossRefPubMedGoogle Scholar
  12. 12.
    Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9(1):171–181.  https://doi.org/10.1038/nprot.2014.006CrossRefPubMedGoogle Scholar
  13. 13.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161(5):1202–1214.  https://doi.org/10.1016/j.cell.2015.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049.  https://doi.org/10.1038/ncomms14049CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jia C, Hu Y, Kelly D, Kim J, Li M, Zhang NR (2017) Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Nucleic Acids Res 45(19):10978–10988.  https://doi.org/10.1093/nar/gkx754CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR (2018) SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods 15(7):539–542.  https://doi.org/10.1038/s41592-018-0033-zCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li WV, Li JJ (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun 9(1):997.  https://doi.org/10.1038/s41467-018-03405-7CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760.  https://doi.org/10.1093/bioinformatics/btp324CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21.  https://doi.org/10.1093/bioinformatics/bts635CrossRefGoogle Scholar
  20. 20.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498.  https://doi.org/10.1038/ng.806CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  23. 23.
    Pierson E, Yau C (2015) ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol 16:241.  https://doi.org/10.1186/s13059-015-0805-zCrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, Hemberg M (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14(5):483–486.  https://doi.org/10.1038/nmeth.4236CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 14(4):414–416.  https://doi.org/10.1038/nmeth.4207CrossRefPubMedGoogle Scholar
  26. 26.
    Tsoucas D, Yuan GC (2018) GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection. Genome Biol 19(1):58.  https://doi.org/10.1186/s13059-018-1431-3CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158:314–326.  https://doi.org/10.1016/j.cell.2014.05.038CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24:853–865.  https://doi.org/10.1016/j.molcel.2006.11.003CrossRefPubMedGoogle Scholar
  29. 29.
    Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358–368.  https://doi.org/10.1016/j.cell.2016.05.025CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–474.  https://doi.org/10.1126/science.1198817CrossRefPubMedGoogle Scholar
  31. 31.
    Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136.  https://doi.org/10.1016/s0006-3495(01)75949-8CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145.  https://doi.org/10.1038/nrg3833CrossRefPubMedGoogle Scholar
  33. 33.
    Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell 58:339–352.  https://doi.org/10.1016/j.molcel.2015.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vallejos CA, Marioni JC, Richardson S (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11:e1004333.  https://doi.org/10.1371/journal.pcbi.1004333CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Skinner SO, Xu H, Nagarkar-Jaiswal S, Freire PR, Zwaka TP, Golding I (2016) Single-cell analysis of transcription kinetics across the cell cycle. Elife 5:e12175.  https://doi.org/10.7554/eLife.12175CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ochiai H, Sugawara T, Sakuma T, Yamamoto T (2014) Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Sci Rep 4:7125.  https://doi.org/10.1038/srep07125CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xu H, Sepulveda LA, Figard L, Sokac AM, Golding I (2015) Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12:739–742.  https://doi.org/10.1038/nmeth.3446CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biostatistics, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Genetics, School of MedicineUniversity of North CarolinaChapel HillUSA
  3. 3.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations