Advertisement

Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data

  • Alicia T. LamereEmail author
  • Jun Li
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

Single-cell RNA-Sequencing is a pioneering extension of bulk-based RNA-Sequencing technology. The “guilt-by-association” heuristic has led to the use of gene co-expression networks to identify genes that are believed to be associated with a common cellular function. Many methods that were developed for bulk-based RNA-Sequencing data can continue to be applied to single-cell data, and several of the most widely used methods are explored. Several methods for leveraging the novel time information contained in single-cell data when constructing gene co-expression networks, which allows for the incorporation of directed associations, are also discussed.

Key words

Gene co-expression network Gene regulatory network Single-cell RNA-Seq Correlation coefficient Count data Directed network Pseudotime 

References

  1. 1.
    Wolfe C, Kohane I, Butte A (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinformatics 6(1):227PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255PubMedCrossRefGoogle Scholar
  3. 3.
    Schafer J, Strimmer K (2005) An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764PubMedCrossRefGoogle Scholar
  4. 4.
    Lee HK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Persson H et al (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 102(24):8633–8638PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Basso K et al (2005) Reverse engineering of regulatory networks in human b cells. Nat Genet 37(4):382–390PubMedCrossRefGoogle Scholar
  7. 7.
    Munksy B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187CrossRefGoogle Scholar
  8. 8.
    Trapnell C et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Campbell K, Yau C (2015) Bayesian Gaussian process latent variable models for pseudotime inference in single-cell rna-seq data. bioRxiv. p. 026872Google Scholar
  10. 10.
    Reid JE, Wernisch L (2016) Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32(19):2973–2980PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Campbell K, Ponting CP, Webber C (2015) Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell rna-seq profiles. bioRxiv. p 027219Google Scholar
  12. 12.
    Bendall SC et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell 157(3):714–725PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Garber M et al (2011) Computational methods for transcriptome annotation and quantification using rna-seq. Nat Methods 8(6):469PubMedCrossRefGoogle Scholar
  14. 14.
    Bullard JH et al (2010) Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics 11(1):94PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of rna-seq data. Genome Biol 11(3):R25PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Iancu D et al (2012) Utilizing rna-seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kim H et al (2013) Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res 20(3):287–298PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Specht AT, Li J (2015) Estimation of gene co-expression from rna-seq count data. Stat Interface 8(4):507–515CrossRefGoogle Scholar
  22. 22.
    Li J, Lamere AT (2018) DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes. Paper presented at the Joint Statistical Meetings, Vancouver, CA, 28 July–2 Aug 2018Google Scholar
  23. 23.
    Specht AT, Li J (2016) LEAP: constructing gene co-expression networks for single-cell rna-sequencing data using pseudotime ordering. Bioinformatics 33(5):764–766PubMedCentralGoogle Scholar
  24. 24.
    Ding B, Zheng L, Wang W (2017) Assessment of single cell rna-seq normalization methods. G3 (Bethesda) 7(7):2039–2045CrossRefGoogle Scholar
  25. 25.
    Risso D et al (2014) Normalization of rna-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wan YW et al (2016) XMRF: an R package to fit markov networks to high-throughput genetics data. BMC Syst Biol 10(3):69PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Allen GI, Liu Z (2013) A local poisson graphical model for inferring networks from sequencing data. IEEE Trans Nanobioscience 12(3):189–198PubMedCrossRefGoogle Scholar
  28. 28.
    Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1(1):37PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Margolin AA et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(1):S7PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ocone A et al (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12):i89–i96PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Coifman RR et al (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci U S A 102(21):7426–7431PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Huynh-Thu VA et al (2010) Inferring gene regulatory networks from expression data using tree-based methods. PLoS One 5(9):e12776PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chan TE et al (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251–267PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Papili Gao N et al (2017) SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34(2):258–266PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentBryant UniversitySmithfieldUSA
  2. 2.Applied and Computational Mathematics and Statistics DepartmentUniversity of Notre DameNotre DameUSA

Personalised recommendations