Advertisement

Quality Control of Single-Cell RNA-seq

  • Peng JiangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

Single-cell RNA-seq (scRNA-seq) is emerging as a promising technology to characterize and dissect the cell-to-cell variability. However, the mixture of technical noise and intrinsic biological variability makes separating technical artifacts from real biological variation cells particularly challenging. Proper detection and filtering out technical artifacts before downstream analysis are critical. Here, we present a protocol that integrates both gene expression patterns and data quality to detect technical artifacts in scRNA-seq samples.

Key words

scRNA-seq Quality control Integrate Gene expression patterns Data quality 

References

  1. 1.
    Eberwine J, Sul J-Y, Bartfai T, Kim J (2014) The promise of single-cell sequencing. Nat Methods 11(1):25–27CrossRefGoogle Scholar
  2. 2.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. Epub 2014/03/25.  https://doi.org/10.1038/nbt.2859CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597. Epub 2013/07/31.  https://doi.org/10.1038/nature12364CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058. Epub 2014/08/05.  https://doi.org/10.1038/nbt.2967CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401. Epub 2014/06/14.  https://doi.org/10.1126/science.1254257CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sandberg R (2014) Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 11(1):22–24CrossRefGoogle Scholar
  7. 7.
    Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133–145CrossRefGoogle Scholar
  8. 8.
    Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 11(7):740–742CrossRefGoogle Scholar
  9. 9.
    Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187CrossRefGoogle Scholar
  10. 10.
    Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT et al (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8(6):1905–1918. Epub 2014/09/23.  https://doi.org/10.1016/j.celrep.2014.08.029CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375. Epub 2014/04/18.  https://doi.org/10.1038/nature13173CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Oyolu C, Zakharia F, Baker J (2012) Distinguishing human cell types based on housekeeping gene signatures. Stem Cells 30(3):580–584CrossRefGoogle Scholar
  13. 13.
    Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A et al (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142CrossRefGoogle Scholar
  14. 14.
    Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser AJ, Li H et al (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516(7529):56–61. Epub 2014/12/05.  https://doi.org/10.1038/nature13920CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jiang P, Thomson JA, Stewart R (2016) Quality control of single-cell RNA-seq by SinQC. Bioinformatics 32(16):2514–2516.  https://doi.org/10.1093/bioinformatics/btw176CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leng N, Chu LF, Barry C, Li Y, Choi J, Li X, et al (2015) Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods 12(10):947–950.  https://doi.org/10.1038/nmeth.3549. PubMed PMID: 26301841; PubMed Central PMCID: PMC4589503CrossRefGoogle Scholar
  17. 17.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429.  https://doi.org/10.1038/nmeth.1593CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25.  https://doi.org/10.1186/gb-2009-10-3-r25CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.  https://doi.org/10.1186/1471-2105-12-323CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Regenerative Biology LaboratoryMorgridge Institute for ResearchMadisonUSA

Personalised recommendations