Legionella pp 21-44 | Cite as

The Pathometabolism of Legionella Studied by Isotopologue Profiling

  • Klaus HeunerEmail author
  • Mareike Kunze
  • Fan Chen
  • Wolfgang EisenreichEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1921)


Metabolic pathways and fluxes can be analyzed under in vivo conditions by incorporation experiments using general 13C-labelled precursors. On the basis of the isotopologue compositions in amino acids or other metabolites, the incorporation rates of the supplied precursors and the pathways of their utilization can be studied in considerable detail. In this chapter, the method of isotopologue profiling is illustrated with recent work on the metabolism of intracellular living Legionella pneumophila.

Key words

Mass spectroscopy NMR spectroscopy Isotopologue profiling 13C isotopologue Metabolism Legionella 



We thank our coworkers Nadine Gillmaier, Vroni Herrmann, Eva Eylert, Claudia Huber, Erika Kutzner, Kerstin Rydzewski, and Eva Schunder for their enthusiastic help in establishing and optimizing the methods described in this article. This work was financed by grants from the Deutsche Forschungsgemeinschaft DFG (Bonn, Germany) (EI 384/11-1 and HE 2845/6-1, /9-1, respectively).


  1. 1.
    Garduno RA, Garduno E, Hiltz M, Hoffman PS (2002) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70:6273–6283CrossRefGoogle Scholar
  2. 2.
    Greub G, Raoult D (2003) Morphology of Legionella pneumophila according to their location within Hartmannella vermiformis. Res Microbiol 154:619–621CrossRefGoogle Scholar
  3. 3.
    Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40CrossRefGoogle Scholar
  4. 4.
    Robertson P, Abdelhady H, Garduno RA (2014) The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila. Front Microbiol 5:670CrossRefGoogle Scholar
  5. 5.
    Eisenreich W, Heuner K (2016) The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 590:3868–3886CrossRefGoogle Scholar
  6. 6.
    Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10:445–456CrossRefGoogle Scholar
  7. 7.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Ropenack-Lahaye EV, Wang TL, Eisenreich W, Dormann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6:e29107CrossRefGoogle Scholar
  8. 8.
    Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412CrossRefGoogle Scholar
  9. 9.
    Eylert E, Schar J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W (2008) Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017CrossRefGoogle Scholar
  10. 10.
    Götz A, Eylert E, Eisenreich W, Goebel W (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 5:e10586CrossRefGoogle Scholar
  11. 11.
    Schunder E, Gillmaier N, Kutzner E, Herrmann V, Lautner M, Heuner K, Eisenreich W (2014) Amino acid uptake and metabolism of Legionella pneumophila hosted by Acanthamoeba castellanii. J Biol Chem 289:21040–21054CrossRefGoogle Scholar
  12. 12.
    Grubmüller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W (2014) Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front Cell Infect Microbiol 4:156PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoffman PS (2008) Microbial physiology. In: Hoffman PS, Klein T, Friedman H (eds) Legionella pneumophila: pathogenesis and immunity. Springer Publishing Corp, New York, pp 113–131Google Scholar
  14. 14.
    Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9:615–626PubMedPubMedCentralGoogle Scholar
  15. 15.
    Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ristroph JD, Hedlund KW, Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13:115–119PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci U S A 102:9924–9929CrossRefGoogle Scholar
  18. 18.
    Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537CrossRefGoogle Scholar
  20. 20.
    Fonseca MV, Sauer J-D, Swanson MS (2008) Nutrient acquisition and assimilation strategies of Legionella pneumophila. In: Heuner K, Swanson MS (eds) Legionella – Molecular Microbiology. Horizon Scientific Press, Norwich, pp 213–226Google Scholar
  21. 21.
    Keen MG, Hoffman MS (1984) Metabolic pathways and nitrogen metabolism in Legionella pneumophila. Curr Microbiol 11:81–88CrossRefGoogle Scholar
  22. 22.
    Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243CrossRefGoogle Scholar
  23. 23.
    Gillmaier N, Schunder E, Kutzner E, Tlapak H, Rydzewski K, Herrmann V, Stammler M, Lasch P, Eisenreich W, Heuner K (2016) Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila. J Biol Chem 291:6471–6482CrossRefGoogle Scholar
  24. 24.
    Herrmann V, Eidner A, Rydzewski K, Bladel I, Jules M, Buchrieser C, Eisenreich W, Heuner K (2011) GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 301:133–139CrossRefGoogle Scholar
  25. 25.
    Harada E, Iida K, Shiota S, Nakayama H, Yoshida S (2010) Glucose metabolism in Legionella pneumophila: dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J Bacteriol 192:2892–2899CrossRefGoogle Scholar
  26. 26.
    Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557CrossRefGoogle Scholar
  27. 27.
    Fonseca MV, Swanson MS (2014) Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 4:12CrossRefGoogle Scholar
  28. 28.
    Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H (2016) Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Mol Microbiol 100:229–246CrossRefGoogle Scholar
  29. 29.
    Häuslein I, Sahr T, Escoll P, Klausner N, Eisenreich W, Buchrieser C (2017) Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism. Open Biol 7:170149CrossRefGoogle Scholar
  30. 30.
    Oliva G, Sahr T, Rolando M, Knoth M, Buchrieser C (2017) A unique cis-encoded small noncoding RNA is regulating Legionella pneumophila Hfq expression in a life cycle-dependent manner. MBio 8:e02182–e02116CrossRefGoogle Scholar
  31. 31.
    Lee WN, Byerley LO, Bergner EA, Edmond J (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458CrossRefGoogle Scholar
  32. 32.
    Ahmed Z, Zeeshan S, Huber C, Hensel M, Schomburg D, Munch R, Eylert E, Eisenreich W, Dandekar T (2014) ‘Isotopo’ a database application for facile analysis and management of mass isotopomer data. Database (Oxford) 2014:bau077CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Robert Koch-Institut, ZBS 2, Working Group “Cellular Interactions of Bacterial Pathogens”BerlinGermany
  2. 2.Lehrstuhl für BiochemieTechnische Universität MünchenGarchingGermany

Personalised recommendations