Advertisement

Legionella pp 205-220 | Cite as

Mitochondrial Dynamics and Activity in Legionella-Infected Cells

  • Ok-Ryul Song
  • Priscille Brodin
  • Carmen BuchrieserEmail author
  • Pedro EscollEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1921)

Abstract

The study of Legionella pneumophila interactions with host mitochondria during infection has been historically limited by the techniques available to analyze and quantify mitochondrial dynamics and activity in living cells. Recently, new, powerful techniques such as high-content microscopy or mitochondrial respiration assays (Seahorse) have been developed to quantitatively analyze mitochondrial parameters. Here we present state-of-the-art methods adapted to analyze mitochondrial dynamics and activity during Legionella infection of living human primary macrophages.

Key words

Mitochondrial dynamics Legionella pneumophila High-content microscopy Seahorse Mitochondrial respiration assay Mitochondrial fission Mitochondrial morphology MitoTracker dyes Bioenergetics Living-cell assays 

Notes

Acknowledgments

Work in C.B. laboratory is financed by Institut Pasteur and ANR (grant no. ANR-10-LABX-62-IBEID). P.E. is funded by the Fondation pour la Recherche Médicale (FRM) project DEQ20120323697. P.B. and O.R.S. received financial support from the European Community (ERC-STG INTRACELLTB no. 260901, MM4TB no. 260872), the ANR (grant no. ANR-10-EQPX-04-01), and the Région Nord Pas de Calais (convention no. 12000080). We thank Nathalie Aulner and the Imagopole-CiTech (part of France-BioImaging supported by ANR grant no. ANR-10-INSB-04-01, Conseil de la Region Ile-de-France, FRM), and the Technology Core of the Center for Translational Science (CRT) at Institut Pasteur, for technical support during the setup of the methods presented here.

References

  1. 1.
    West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402.  https://doi.org/10.1038/nri2975CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Escoll P, Mondino S, Rolando M, Buchrieser C (2016) Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 14:5–19.  https://doi.org/10.1038/nrmicro.2015.1CrossRefPubMedGoogle Scholar
  3. 3.
    Escoll P, Song O-R, Viana F et al (2017) Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe 22:302–316.e7.  https://doi.org/10.1016/j.chom.2017.07.020CrossRefPubMedGoogle Scholar
  4. 4.
    Banga S, Gao P, Shen X et al (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 104:5121–5126.  https://doi.org/10.1073/pnas.0611030104CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wynosky-Dolfi MA, Snyder AG, Philip NH et al (2014) Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211:653–668.  https://doi.org/10.1084/jem.20130627CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343.  https://doi.org/10.1038/nature12985CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Labbé K, Murley A, Nunnari J (2014) Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol 30:357–391.  https://doi.org/10.1146/annurev-cellbio-101011-155756CrossRefPubMedGoogle Scholar
  8. 8.
    Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117.  https://doi.org/10.1016/j.tem.2015.12.001CrossRefPubMedGoogle Scholar
  9. 9.
    Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817:1833–1838.  https://doi.org/10.1016/j.bbabio.2012.02.033CrossRefPubMedGoogle Scholar
  10. 10.
    Iannetti EF, Smeitink JAM, Beyrath J et al (2016) Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc 11:1693–1710.  https://doi.org/10.1038/nprot.2016.094CrossRefPubMedGoogle Scholar
  11. 11.
    Leonard AP, Cameron RB, Speiser JL et al (2015) Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853:348–360.  https://doi.org/10.1016/j.bbamcr.2014.11.002CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang J, Nuebel E, Wisidagama DRR et al (2012) Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7:1068–1085.  https://doi.org/10.1038/nprot.2012.048CrossRefPubMedGoogle Scholar
  13. 13.
    Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163:1314–1325.  https://doi.org/10.1016/j.cell.2015.11.007CrossRefPubMedGoogle Scholar
  14. 14.
    Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331CrossRefGoogle Scholar
  15. 15.
    Tiaden A, Spirig T, Weber SS et al (2007) The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol 9:2903–2920.  https://doi.org/10.1111/j.1462-5822.2007.01005.xCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of LilleLilleFrance
  2. 2.Institut Pasteur, Biologie des Bactéries IntracellulairesParisFrance
  3. 3.CNRS UMR 3525ParisFrance
  4. 4.Institut Pasteur, Biologie des Bactéries IntracellulairesParisFrance
  5. 5.CNRS UMR 3525ParisFrance

Personalised recommendations