Purification and Functional Analysis of Plant Long Noncoding RNAs (lncRNA)

  • Trung Do
  • Zhipeng Qu
  • Iain SearleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1933)


More than 70% of eukaryotic genomes are transcribed into RNA transcripts, the majority of these transcripts are noncoding protein, and their biological functions are largely unknown. Over the last decade, the application of high-throughput sequencing technologies has led to the description of almost all cellular coding and noncoding RNA transcripts except perhaps for those transcripts that are lowly abundant or those present only in specific cells that are underrepresented in sampled tissue(s). An often underrepresented class of noncoding are long noncoding RNAs (lncRNAs), and these often play key regulatory functions for many biological processes such as cell identity and cell division. However, the purification and functional characterization in vitro are still a challenge in both animal and plant experimental systems. Here, we describe in detail methodology for purification of specific cell types, bioinformatic annotation of lncRNAs, and investigation of biological function using the reference plant Arabidopsis thaliana.

Key words

Arabidopsis thaliana Long noncoding RNA Nuclei purification RNA-Seq Functional analysis 



This work was supported by an Australian Research Council Future Fellowship (FT130100525) awarded to IS and a MOET-VIED Ph.D. scholarship awarded to T.D.


  1. 1.
    Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131(7):1340–1353CrossRefGoogle Scholar
  2. 2.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488CrossRefGoogle Scholar
  3. 3.
    Burgess AL, David R, Searle IR (2015) Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC Plant Biol 15:199CrossRefGoogle Scholar
  4. 4.
    Wang D, Qu Z, Yang L, Zhang Q, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK (2017) Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in Plants. Plant J 90:133–146CrossRefGoogle Scholar
  5. 5.
    Ashby R, Forêt S, Searle I, Maleszka R (2016) MicroRNAs in honey bee caste determination. Sci Rep 6:18794CrossRefGoogle Scholar
  6. 6.
    Jin J, Liu J, Wang H, Wong L, Chua N-H (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071CrossRefGoogle Scholar
  7. 7.
    David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, Preiss T, Searle I (2017) Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and ncRNAs. Plant Cell 29(3):445–460CrossRefGoogle Scholar
  8. 8.
    Wang H, Chung PJ, Liu J, Jang I-C, Kean MJ, Xu J, Chua N-H (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453CrossRefGoogle Scholar
  9. 9.
    Zhang Y-C, Liao J-Y, Li Z-Y, Yu Y, Zhang J-P, Li Q-F, Qu L-H, Shu W-S, Chen Y-Q (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12):512CrossRefGoogle Scholar
  10. 10.
    Wang HLV, Chekanova JA (2017) Long noncoding RNAs in plants. In: Rao M (ed) Long non coding RNA biology. Advances in experimental medicine and biology, vol 1008. Springer, Singapore.Google Scholar
  11. 11.
    Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6(1):56–68CrossRefGoogle Scholar
  12. 12.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349CrossRefGoogle Scholar
  13. 13.
    Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243CrossRefGoogle Scholar
  14. 14.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefGoogle Scholar
  15. 15.
    Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536CrossRefGoogle Scholar
  16. 16.
    Cloonan N et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619CrossRefGoogle Scholar
  17. 17.
    Marioni J, Mason C, Mane S, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517CrossRefGoogle Scholar
  18. 18.
    Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45:81–94CrossRefGoogle Scholar
  19. 19.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al (2012) Landscape of transcription in human cells. Nature 489:101–108CrossRefGoogle Scholar
  20. 20.
    Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua N-H (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24(11):4333–4345CrossRefGoogle Scholar
  21. 21.
    Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566CrossRefGoogle Scholar
  22. 22.
    Guil S, Soler M, Portela A, Carrère J, Fonalleras E, Gómez A et al (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19:664–670CrossRefGoogle Scholar
  23. 23.
    Qiu J, Wang Y, Ding J, Jin H, Yang D, Hua K (2015) The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis. Exp Cell Res 333(2):238–248CrossRefGoogle Scholar
  24. 24.
    SheikMohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L (2010) Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16:324–337CrossRefGoogle Scholar
  25. 25.
    Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS, Lim DA (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355(6320):eaah7111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular and Biomedical Sciences, School of Biological SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations